1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
3 years ago
13

O que é cena fone de luz na visão da fisica

Physics
1 answer:
yulyashka [42]3 years ago
4 0
Me don’t speak spanish
You might be interested in
Ina shoots a large marble (Marble A, mass: 0.08 kg) at a smaller marble (Marble B, mass: 0.05 kg) that is sitting still. Marble
Neporo4naja [7]

Answer:

2.4 m/s

Explanation:

Momentum is conserved.

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

(0.08 kg)(0.5 m/s) + (0.05 kg)(0 m/s) = (0.08 kg)(-0.1 m/s) + (0.05 kg) v

0.04 kg m/s = -0.08 kg m/s + (0.05 kg) v

0.12 kg m/s = (0.05 kg) v

v = 2.4 m/s

4 0
3 years ago
A steel ball and a wooden ball of the same diameter are released together from the top of a tower. In the absence of air resista
ella [17]

Answer:

False

Explanation:

The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².

Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,

s = 1/2gt² ⇒ t = √(2s/g)

Since. s = height is the same for both objects, they land at the same time neglecting air resistance.

8 0
3 years ago
0.002 written in scientific notation
Oliga [24]

Answer:0,002 = 2 x 10⁻³

Explanation:

0,002 = 2 / 1000 = 2 / 10³ = 2 x 10⁻³

3 0
3 years ago
A thin spherical shell of radius R has a total charge +Q uniformly distributed over its surface. Of the following distance r fro
grigory [225]

Answer:

The correct answer is B

Explanation:

Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity

         Φ._{E} = ∫ E. dA = q_{int} / ε₀

For this case we create a Gaussian surface that is a sphere.  We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product

        ∫ E dA = q_{int} / ε₀

The area of ​​a sphere is

     A = 4π r²

   

    E 4π r² =q_{int} / ε₀

    E = (1 /4πε₀ )  q / r²

Having the solution of the problem let's analyze the points:

A   ) r = 3R / 4  = 0.75 R.

  In this case there is no charge inside the Gaussian surface therefore the electric field is zero

        E = 0

B) r = 5R / 4 = 1.25R

In this case the entire charge is inside the Gaussian surface, the field is

    E = (1 /4πε₀ )  Q / (1.25R)²

    E = (1 /4πε₀ )  Q / R2 1 / 1.56²

    E₀ = (1 /4π ε₀ )  Q / R²

   E_{B} =  Eo /1.56 ²

  E_{B}  = 0.41 Eo

C) r = 2R

All charge inside is inside the Gaussian surface

    E_{B} =(1 /4π ε₀ ) Q    1/(2R)²

    E_{B} = (1 /4π ε₀ ) q/R²   1/4

    E_{B} = Eo  1/4

    E_{B} = 0.25 Eo

D) False the field changes with distance

The correct answer is B

4 0
3 years ago
If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on the Earth to observe stars, to what
marin [14]

Answer:

It corresponds to a distance of 100 parsecs away from Earth.

Explanation:

The angle due to the change in position of a nearby object against the background stars it is known as parallax.

It is defined in a analytic way as it follows:

       

\tan{p} = \frac{1AU}{d}

Where d is the distance to the star.

p('') = \frac{1}{d} (1)  

Equation (1) can be rewritten in terms of d:

d(pc) = \frac{1}{p('')} (2)

Equation (2) represents the distance in a unit known as parsec (pc).

The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).

For the case of   (p('') = 0.01):

d(pc) = \frac{1}{0.01}

d(pc) = 100

Hence, it corresponds to a distance of 100 parsecs away from Earth.

<em>Summary:</em>

Notice how a small parallax angle means that the object is farther away.

Key terms:

Parsec: Parallax of arc second

7 0
3 years ago
Other questions:
  • Megan rode the bus to school, which is located 8 kilometers from her home. If Megan's frame of reference is her house, and it to
    7·1 answer
  • You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/s2. You instantly star
    8·1 answer
  • What do you measure with a spring scale?
    11·1 answer
  • A pair of glasses is dropped from the top of a 42.0 meter high stadium. A pen is dropped from the same position 2.00 seconds lat
    8·1 answer
  • A campus bird spots a member of an opposing football team in an amusement park. The football player is on a ride where he goes a
    13·1 answer
  • If a projectile fired beneath the water, straight up, breaks through the surface at a speed of 13m/s, to what height above the w
    13·1 answer
  • Which fators influence ocean currents
    11·1 answer
  • Suppose you have 1 kg each of iron, glass, and water, and all three samples are at 10°C.
    10·1 answer
  • 1. Rocks change as a result of what?
    12·2 answers
  • Acceleration is positive when you are speeding up.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!