Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:

Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.
Answer: 29.17m/s^2
Explanation:
Given the following :
Velocity = 525 m/s
Time = 18 seconds
Acceleration = change in Velocity with time
Using the motion equation:
v = u + at
Where v = final Velocity
u = Initial Velocity and t = time
Plugging our values
525 = 0 + a × 18
525 = 18(a)
a = 525 / 18
a = 29.166666
a = 29.17 m/s^2
For a Rectangular plate has a voltage of +180V and a 'voltage of -5V. , the second plate has the Electric field mathematically given as
E=21.5*10^3v/m
<h3>What is
the field strength?</h3>
Generally, the equation for the Electric field is mathematically given as
E=v/d
Where
v={180-(-5)}v
v=185v
Therefore
E=185/8.6*10^{-3}
E=21.5*10^3v/m
In conclusion, Electric field
E=21.5*10^3v/m
Read more about electric field
brainly.com/question/9383604