Answer:
Explanation:
Due to heat energy , metal expands . Formula for linear expansion is as follows .
L = l ( 1 + α Δt )
where L is expanded length , l is original length , α is coefficient of linear expansion and Δt is increase in temperature .
To pass the sphere through the ring , the diameter of both ring and sphere should be same after heating . Let after increase of temperature Δt , their diameter becomes same as L . The linear coefficient of brass and steel are
20 x 10⁻⁶ and 12 x 10⁻⁶ respectively .
For steel sphere ,
L = 25 ( 1 + 12 x 10⁻⁶ Δt )
For brass ring
L = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
25 ( 1 + 12 x 10⁻⁶ Δt ) = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
1.004( 1 + 12 x 10⁻⁶ Δt ) = ( 1 + 20 x 10⁻⁶ Δt )
1.004 + 12.0482 x 10⁻⁶ Δt = 1 + 20 x 10⁻⁶ Δt
.004 = 7.9518 x 10⁻⁶ Δt
Δt = 4000 / 7.9518
= 503⁰C.
final temp = 503 + 15 = 518⁰C .
Answer:
A. 30.38°
B 5.04N
Explanation:
Using
F= ILBsin theta
2 .55N= 8.4Ax 0.5mx 1.2T x sintheta
Theta = 30.38°
B. If theta is 90°
Then
F= 8.4Ax 0.5mx 1.2x sin 90°
F= 5.04N
Answer:
c)wind
Explanation:
Wind from the given choices will have the greatest amount of kinetic energy.
Kinetic energy is the energy due to motion of a body. It is different from the energy at rest in a body.
- Wind is air in motion.
- Wind energy is a form of kinetic energy in motion.
A book on a table, a slice of pizza and a person at the top of the stairs are all at rest and will possess potential energy.
Answer:
8.049 MW
Explanation:
The expression for gravitational potential energy is given as
Ep = mgh............. Equation 1
Ep = gravitational potential energy, m = mass of water, h = height, g = acceleration due to gravity.
Given: m = 58.4×10³ kg, h = 20.1 m, g = 9.81 m/s²
Substitute into equation 1
Ep = 58.4×10³(20.1)(9.81)
Ep = 1.6098×10⁷ J.
If one half the gravitational potential energy of the water were converted to electrical energy
Electrical energy = Ep/2
Electrical energy = (1.6098×10⁷)/2
Electrical energy = 8.049×10⁶ J
In one seconds,
The power generated = 8.049×10⁶ W
Power generated = 8.049 MW
Current is created when charges are quickened by an electric field to move where the position of lower temperature. An electric current is a stream of electric charge. In electric circuits, this charge is regularly conveyed by moving electrons in a wire.