Answer: I maybe wrong but i'm pretty sure its C) Kinetic energy
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

<em><u>One</u></em><em><u> </u></em><em><u>newton</u></em><em><u> </u></em><em><u>force</u></em><em> </em><em>is</em><em> </em><em>defined as t</em><em>h</em><em>e</em><em> </em><em>force</em><em> </em><em>that</em><em> </em><em>is</em><em> necessary to provide a mass of one kilogram with an acceleration of one metre per second per second. One newton is equal to a force of 100,000 dynes in the centimetre-gram-second (CGS) system, or a force of about 0.2248 pound </em><em>i</em><em>n</em><em> </em><em>the</em><em> </em><em>f</em><em>o</em><em>o</em><em>t</em><em>-</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em>-</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>system</em><em>.</em>
The answer is b or d u chooose i don’t know which one
Answer:
The answer is the option a.
Explanation:
We know that magnetic force (Fm) is defined as
Fm = q (v x B)
Where q is a the value of the charge, v is the velocity of the charge and B is the value of the magnetic field.
"v x B" is defined as the cross product between the vectors velocity and magnetic field, and if the angle between them is thetha < 180°, then, the cross product is
v x B = vBsin (thetha)
So,
Fm = qvBsin (thetha)
And, in case in which v and B are parallel vectors, thetha is zero, and,
sin (thetha)=sin (0) = 0
So, Fm=0