Let F = required force, N
Given:
d = 12 m, distance
W = 280 J, work done
By definition,
W = F*d,
therefore
(F N)*(12 m) = (280 J)
F = 280/12 = 23.33 N
Answer: The force is 23.3 N (nearest tenth)
It should be 12 N. the force of the book on the table should be the same as the force of the table on the book.
Answer:
The power output of this engine is 
The the maximum (Carnot) efficiency is 
The actual efficiency of this engine is 
Explanation:
From the question we are told that
The temperature of the hot reservoir is 
The temperature of the cold reservoir is 
The energy absorbed from the hot reservoir is 
The energy exhausts into cold reservoir is 
The power output is mathematically represented as

Where t is the time taken which we will assume to be 1 hour = 3600 s
W is the workdone which is mathematically represented as

substituting values

So


The Carnot efficiency is mathematically represented as



The actual efficiency is mathematically represented as

substituting values


Answer:
13,750 N
Yes
Explanation:
Given:
v₀ = 90 km/h = 25 m/s
v = 0 m/s
t = 4 s
Find: a and Δx
a = Δv / Δt
a = (0 m/s − 25 m/s) / (4 s)
a = -6.25 m/s²
F = ma
F = (2200 kg) (-6.25 m/s²)
F = -13,750 N
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 25 m/s) (4 s)
Δx = 50 m
Explanation:
It is given that,
Mass of a bungee jumper is 65 kg
The time period of the oscillation is 38 s, hitting a low point eight more times.It means its time period is

After many oscillations, he finally comes to rest 25.0 m below the level of the bridge.
For an oscillating object, the time period is given by :

k = spring stiffness constant
So,

When the cord is in air,
mg=kx
x = the extension in the cord

So, the unstretched length of the bungee cord is equal to 25 m - 5.6 m = 19.4 m