Answer:
See explanation for step by step explanations.
Explanation:
Let X be the mass of a randomly selected resistor
The probability density function is given as
, 80<x<120
=0, otherwise
a) By using the given pdf we have to find the probability of the resistors having resistance less than 90
=
=
=0.0625
the probability of the resistors having resistance less than 90 is 0.0625
Step 2 of 4<
/p>
b) we have to find the mean resistance
Mean=
=
=
=106.67
The mean resistance is 106.67
Answer:
a) 23.51 m/s
b) 1.07 kg
Explanation:
Parameters given:
Kinetic energy, K = 295 J
Momentum, p = 25.1 kgm/s
a) The kinetic energy of a body is given as:

where m = mass of the body and v = speed of the body
We know that momentum is given as:
p = mv
Therefore:
K = 1/2 * pv
=> v = 2K / p
v = (2 * 295) / 25.1 = 23.51 m/s
The velocity of the body at that instant is 23.51 m/s.
b) Momentum is given as:
p = mv
=> m = p / v
m = 25.1 / 23.51 = 1.07 kg
The mass of the body at that instant is 1.07 kg
Answer:
A combined reaction is when two or more reagents combine __ to form a product
Explanation:
A combination or synthesis reaction, consists of the formation of a substance from the reaction of two or more substances.
Example: A + B -> C
2Na + Cl2 ---> 2NaCl (sodium chloride formation reaction)
Answer:
a.) The electric and magnetic fields are in phase with each other as they propagate through space.
Explanation:
Electromagnetic wave is a transverse wave in which magnetic field and electric field both induces each other as both changes with time
Here magnetic field induces electric field and similarly magnetic field induces electric field.
As we know that this is a transverse wave so here magnetic field and electric field lies in perpendicular planes. but they both propagate in same direction in such a wave that both fields reaches their maximum position and minimum positions simultaneously
So the correct answer is
a.) The electric and magnetic fields are in phase with each other as they propagate through space.
Answer:
1. the electric potential energy of the electron when it is at the midpoint is - 2.9 x
J
2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x
J
Explanation:
given information:
= 3 nC = 3 x
C
= 2 nC = 2 x
C
r = 50 cm = 0.5 m
the electric potential energy of the electron when it is at the midpoint
potential energy of the charge, F
F = k 
where
k = constant (8.99 x
)
electron charge,
= - 1.6 x
C
since it is measured at the midpoint,
r = 
= 0.25 m
thus,
F = 
= k
+ k
=
(
)
= (8.99 x
)( - 1.6 x
)(3 x
+2 x
)/0.25
= - 2.9 x
J
the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge
= 10 cm = 0.1 m
= 0.5 - 0.1 = 0.4 m
F = k
+ k
=
(
+
)
= (8.99 x
)( - 1.6 x
)(3 x
/0.1+2 x
/0.4)
= - 5.04 x
J