The acceleration of the car is 0.8049
.It takes 13.802s to travel the 230 m.
<h3>
What is acceleration?</h3>
In mechanics, acceleration refers to the rate at which an object's velocity with respect to time varies. Acceleration is a vector quantity (in that they have magnitude and direction). The direction of an object's acceleration is determined by the direction of the net force acting on it. Newton's Second Law states that the combined effect of two factors determines how much an item accelerates:
(i) It follows that the magnitude of the net balance of all external forces acting on the object is directly proportional to the magnitude of this net resulting force, and
(ii) the mass of the thing, depending on the materials out of which it is constructed, is inversely proportional to the mass of the thing.
Calculations:
40 km/hr ----- 11.11m/s
80 km/hr ----- 22.22m/s

Time taken
v-u=at
22.22-11.11= 0.8049 x t
t=13.802s
To learn more about acceleration ,visit:
brainly.com/question/2303856
#SPJ4
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A
Answer:
You would be watching tv for 1 hour and 40 mins
Explanation:
How much time take it take for 3:50 am to 5:30
Answer:
<em>585lb</em>
Explanation:
Given the formula for calculating the magnitude of the resultant force as;

<em>Given </em>
<em></em>
<em></em>
<em>Hence the magnitude of the resultant force is 585lb</em>