Answer:
f = 878,080 N
Explanation:
mass of pile driver (m) = 2100 kg
distance of pile driver to steel beam (s) = 5 m
depth of steel driven (d) = 12 cm = 0.12 m
acceleration due to gravity (g0 = 9.8 m/s^{2}
calculate the average force exerted on the pile driver by the beam.
- from work done = force x distance
- work done = change in potential energy of the pile driver
- equating the two equations above we have
force x distance = m x g x (s - d)
f x 0.12 = 2100 x 9.8 x (5- (-0.12))
d = - 0.12 because the steel beam went down at we are taking its
initial position to be an origin point which is 0
f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12
f = 878,080 N
Answer:
d)21.5 moles
Explanation:
Given that
L = 24 L
T = 27 °C = 300 K
P = 22 atm
We know that ideal gas equation
P V = n R T
P=Pressure ,V= Volume ,n=Moles ,R=Universal gas constant ,T=Temperature
Now by putting the values
22 x 24 = n x 0.08206 x 300
n= 21.447 moles
n= 21.5 moles
Therefore the number of moles will be 21.5 moles.
The answer is "d".
Here i state the conservation of energy rule and use that to justify my answer. I showed how to manipulate percentages to get the final answer of 11000J (2sf). Hope I'm right xx
Sound waves actually travel much faster in water than air, but words and the direction of the noise are distorted.
Answer:
1. Molecular cloud
2. Close binary
3. Brown dwarf
4. Protostellar wind
5. Thermal pressure
6. Protostellar disk
7. Jet
8. Degeneracy pressure
Explanation:
1. The Sun formed, probably along with other stars, within a large molecular cloud.
2. A Close binary consists of two stars that orbit each other every few days.
3. A Brown dwarf is a "star" so small in mass that its core never gets hot enough to sustain nuclear fusion reactions.
4. Most of the gas remaining from the process of star formation is swept into interstellar space by a protostellar wind.
5. As a protostar's internal temperature increases, its growing thermal pressure helps slow its contraction due to gravity.
6. Planets may form within the protostellar disk that surrounds a forming star.
7. Mass can be lost through a jet of material ejected along a protostar's axis of rotation.
8. A "star" with mass below 0.08 solar mass has its gravitational contraction halted by degeneracy pressure.