Answer:
Part A)
1) 
2)
Part B)
1) 
2)
Step-by-step explanation:
Part 1) x and y vary inversely and x=50 when y=5 find y when x=10 what is k?
we know that
A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form
or 
step 1
<u>Find the value of k</u>
x=50 when y=5
substitute the values
------>
-----> 
The equation is equal to
or 
step 2
<u>Find y when x=10</u>
substitute the value of x in the equation and solve for y
Part B) x and y vary directly and x=6 when y=42 find k what is y when x=12
we know that
A relationship between two variables, x, and y, represent a direct variation if it can be expressed in the form
or 
step 1
<u>Find the value of k</u>
x=6 when y=42
substitute the values
------>
----->
The equation is equal to
or
step 2
<u>Find y when x=12</u>
substitute the value of x in the equation and solve for y
Answer:
4
Step-by-step explanation:
(9 x 2/3) x 2/3
9x 2 = 18
18/3 = 6
6 x 2 = 12
12/3 = 4
(9 x 2/3) x 2/3 = 4
Geometric sequences go up due to a common ratio. Here the common ratio can be worked out by dividing a term by its previous term e.g term 2 divided by term 1.

Therefore the common ratio is 6.
Answer: 6
Step-by-step explanation:
6 x 3 = 18