1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
13

Simplify. -9c-(5-3c)

Mathematics
1 answer:
Sidana [21]3 years ago
7 0

Answer:

-12c-5

Step-by-step explanation:

Step 1- Distribute into the parenthesis(Since there's nothing next to the parenthesis to multiply, there is a 1).

-9c-1(5-3c)

-9c-5(1)-3(1)c

Step 2- Multiply,

-9c-5-3c

Step 3- Add common variables.

(-9c-3c)-5

-12c-5

You might be interested in
Hi i need help with this
Illusion [34]

Answer:

2 (n + 2) = 2n + 4

n + n + n + n = 4n

2 (3n) = 6n

4n + n = 5n

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
Find the range of the function for the fiven domain. f(x)= 3x-8; {-2, -1, 0, 1, 2}
ryzh [129]
<span>f(x)= 3x-8

x = -2,  </span><span>f(x)= 3(-2) -8 = -6 - 8 = -14
</span>x = -1,  f(x)= 3(-1) -8 = -3 - 8 = -11
x = 0,  f(x)= 3(0) -8 = 0 - 8 = -8
x = 1,  f(x)= 3(1) -8 = 3 - 8 = -5
x = 2,  f(x)= 3(2) -8 = 6 - 8 = -2
Domain <span> {-2, -1, 0, 1, 2}
</span>Range: <span> {-14, -11, -8, -5, -2}
</span>
answer
Range:  {-14, -11, -8, -5, -2}
7 0
4 years ago
Double checking my answer for this equation
TEA [102]
4a^2-2ab-5b^2 :) that is simplified
7 0
3 years ago
Read 2 more answers
Help fast 15 points
den301095 [7]

Answer:

1/4

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Plzzz help asap this is due and plz tell me why and how to do this
    10·1 answer
  • Which solid figure has six faces (including the base(s)) and six vertices?
    14·1 answer
  • What is the value of x?​
    12·1 answer
  • Josie made a 75 on her first quiz in math. On her second quiz she made a 90. What was the
    10·1 answer
  • I need to know the surface area of these
    5·1 answer
  • the cross sectional area of a cylinder is 614 cm 2 the height is 8cm what is the volume of the cylinder​
    6·1 answer
  • Se van a repartir 5 barritas de amaranto entre
    9·1 answer
  • Please help i have no clue how to solve
    8·2 answers
  • What’s this can someone help me please
    13·1 answer
  • The table shows the monthly low temperature for several cities in December. The monthly low temperature in Toledo in December wa
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!