For the answer to the answer above, the excess energy must be absorbed to overcome the lattice energy, and then energy is released as the ions are hydrated.
So, the heat of solution =is+7.3X10^2 kJ/mol - 793 kJ/mol =
So the answer is
-63 kJ/mol
I hope you find my answer helpful.
<span>
</span>
Answer:
Hi
Each electron in an atom is characterized by four numbers that arise from the resolution of Schrödinger's equations. These numbers are called quantum numbers. Each energy level corresponds to a main known quantum number, which is represented by the letter n. This number gives an idea of the location of an energy level with respect to the nucleus. The higher n, the mayor will be the energy of that level and the farther away from the nucleus is removed.
In each energy level there may be sub-levels. Each of them is specified by another quantum number called secondary, specified with the letter l. The value of this quantum number can vary from zero to n-1. For example, in the first energy level, the quantum number can only take a value that is zero, while in the second level, it can take a value between zero or one. Then, it can be said that the values of the quantum number n indicate the size of the orbital, that is, its proximity to the nucleus; and the values of the quantum number l variables the orbital:
• If l = 0, the orbital is of type s.
• If l = 1, the orbitals are of type p.
• If l = 2, the orbitals are of type d.
• If l = 3, the orbitals are of type f.
Explanation:
Answer:
M is Li, X is boron, and Q is oxygen. MX is LiB, lithium bromide. QX is BO, boron oxide (not Body Odor).
Explanation: The atomic masses don't match exactly with those listed in the periodic table. Boron, Oxygen, and Lithium come the closest.
Lithium reacts with bromine since it happily donates it's single 2s electron to bromine's 4p orbital to fill bromine's 4s and 4p valence orbitals to go from 7 to 8 valence electrons, it's happy state.
Boron reacts with oxygen to form B2O3, which I'll happily write as O=BOB=O, since my name is Bob. This is more complex, but both elements want to move electrons around in order to reach a more stable electron configuration. Boron has 3 valence electrons and oxygen has 6. So each oxygen needs 2 electrons to fill it's outer shell and boron is happy to lose it's 3 valence electrons to reach an outer shell equiovalent to helium. So 2 borons contribute a total of 6 electrons, and the 3 oxygens have room for a total of 6 electrons to fill their outer shell.
In an atom there are the same number of protons as electrons to start with. The answer would be 65 aswell.
the correct answer is A
A diatom is a(n) <u>Singled-celled organism</u> because it has <u>only one cell.</u>
<u />
<em>(study island)</em>