Answer:
b
Explanation:
Atom is the smallest particle of an element
Water is H2O. hydrogen atom is H1 O2
so hydrogen atom is H2
Given the data, the correct statement is
Even though for a majority of the race they accelerated at the same rate, Beverly won because her initial acceleration was greater than Carl’s
<h3>What is acceleration? </h3>
This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
<h3>How to determine the initial acceleration of Beverly</h3>
- Initial velocity (u) = 0 m/s
- Final velocity (v) = 15 m/s
- Time (t) = 10 s
- Initial acceleration (a₁) =?
a₁ = (v – u) / t
a₁ = (15 – 0) / 10
a₁ = 1.5 m/s²
<h3>How to determine the final acceleration of Beverly</h3>
- Initial velocity (u) = 15 m/s
- Final velocity (v) = 35 m/s
- Time (t) = 50 - 10 = 40 s
- Final acceleration (a₂) =?
a₂ = (v – u) / t
a₂ = (35 – 15) / 40
a₂ = 0.5 m/s²
<h3>How to determine the initial acceleration of Carl</h3>
- Initial velocity (u) = 0 m/s
- Final velocity (v) = 10 m/s
- Time (t) = 10 s
- Initial acceleration (a₁) =?
a₁ = (v – u) / t
a₁ = (10 – 0) / 10
a₁ = 1 m/s²
<h3>How to determine the final acceleration of Carl</h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 30 m/s
- Time (t) = 50 - 10 = 40 s
- Final acceleration (a₂) =?
a₂ = (v – u) / t
a₂ = (30 – 10) / 40
a₂ = 0.5 m/s²
SUMMARY
- Initial acceleration of Beverly = 1.5 m/s²
- Final acceleration of Beverly = 0.5 m/s²
- Initial acceleration of Carl = 1 m/s²
- Final acceleration of Carl = 0.5 m/s²
From the above calculations, we can see that Beverly's initial acceleration is higher than that of Carl's and their final acceleration is the same.
Therefore, the correct answer to the question is:
Even though for a majority of the race they accelerated at the same rate, Beverly won because her initial acceleration was greater than Carl’s
Complete question
See attached photo
Learn more about acceleration:
brainly.com/question/491732
#SPJ1
Diffraction:
Diffraction<span> describes how waves bend, or change direction, as they travel around the edges of obstacles. </span>Diffraction<span> occurs in water waves, </span>sound <span>waves, and light waves, but the amount of </span>diffraction <span>depends on the size of the obstacle or opening in relation to the wavelength of the wave.</span>
Answer:
300K
Explanation:
Given pressure of the system decreased by 10 times which means 
Given the volume of the system increased by 5 times which means 
Given final temperature 
Let the initial temperature be 
We know that PV=nRT
As n and R are constant 



T1=300K