70.306 would be your answer.
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).
Answer:
s orbital
Explanation:
it has the lowest energy because
Paulis law state that orbitals with lower energy must be fill first before that of higher energy
and the s orbital is filled first
Answer:
For example, the atomic radius of the metal zirconium, Zr, (a period-5 transition element) is 155 pm (empirical value) and that of hafnium, Hf, (the corresponding period-6 element) is 159 pm. ... The increase in mass and the unchanged radii lead to a steep increase in density from 6.51 to 13.35 g/cm3.
Explanation: