Given: PSTR is a parallelogram m∠T:m∠R=1:3, RD ⊥ PS , RM ⊥ ST Find: m∠DRM
1 answer:
Answer:
m∠DRM = 45°
Step-by-step explanation:
∵ PSTR is a parallelogram
∴ TS // RP ⇒ opposite sides
∴ m∠T + m∠R = 180° ⇒ (1) (interior supplementary angles)
∵ m∠T : m∠R = 1 : 3
∴ m∠R = 3 m∠T ⇒ (2)
- Substitute (2) in (1)
∴ m∠T + 3 m∠T = 180
∴ 4 m∠T = 180
∴ m∠T = 180 ÷ 4 = 45°
∴ m∠R = 3 × 45 = 135°
∵ m∠R = m∠S ⇒ opposite angles in a parallelogram
∴ m∠S = 135°
∵ RD ⊥ PS
∴ m∠RDS = 90°
∵ RM ⊥ ST
∴ m∠RMS = 90°
- In quadrilateral RMSD
∵ m∠S = 135°
∵ m∠RDS = 90°
∵ m∠RMS = 90°
∵ The sum of measure of the angles of RMSD = 360°
∴ m∠DRM = 360 - ( 135 + 90 + 90) = 45°
You might be interested in
x^2 cos(x)+2x sin (x)
Hope this helps!
Answer:
The answer is C/Point E
Step-by-step explanation:
I did the test.
Answer:
The answer is a= -2
Hope this helped :)
You just multiply the x value by 5
-2(5)=-10
-1(5)=-5
0(5)=0
3(5)=15
6(5)=30
9(5)=45
Wouldnt it be 21 idk dont pay attention to me lol