Answer:
The rate of transfer of heat is 0.119 W
Solution:
As per the question:
Diameter of the fin, D = 0.5 cm = 0.005 m
Length of the fin, l =30 cm = 0.3 m
Base temperature, 
Air temperature, 
k = 388 W/mK
h = 
Now,
Perimeter of the fin, p = 
Cross-sectional area of the fin, A = 
A = 
To calculate the heat transfer rate:

where

Now,

Answer:
If a body is constantly accelerating the graph would be one-quadrant
Answer:
Work- Activity involving mental or physical effort done in order to achieve a purpose or result.
Explanation:
This was the first definition from the dictionary on google :)
Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L: