Answer:
What is freezing point?
A liquid's freezing point is determined at which it turns into a solid. Corresponding to the melting point, the freezing point often rises with increasing pressure. In the case of combinations and for some organic substances, such as lipids, the freezing point is lower than the melting point. The first solid which develops when a combination freezes often differs in composition from the liquid, and the development of the solid alters the composition of the remaining liquid, typically lowering the freezing point gradually. Utilizing successive melting and freezing to gradually separate the components, this approach is used to purify mixtures.
What is melting point?
The temperature at which a purified substance's solid and liquid phases may coexist in equilibrium is referred to as the melting point. A solid's temperature goes up when heat is added to it until the melting point is achieved. The solid will then turn into a liquid with further heating without changing temperature. Additional heat will raise the temperature of the liquid once all of the solid has melted. It is possible to recognize pure compounds and elements by their distinctive melting temperature, which is a characteristic number.
The difference between freezing point and melting point:
- While a substance's melting point develops when it transforms from a solid to a liquid, a substance's freezing point happens when a liquid transforms into a solid when the heat from the substance is removed.
- When the temperature rises, the melting point can be seen, and when the temperature falls, the freezing point can be seen.
- When a solid reaches its melting point, its volume increases; meanwhile, when a liquid reaches its freezing point, its volume decreases.
- While a substance's freezing point is not thought of as a distinctive attribute, its melting point is.
- While external pressure is a significant component in freezing point, atmospheric pressure is a significant element in melting point.
- Heat must be supplied from an outside source in order to reach the melting point for such a state shift. When a material is at its freezing point, heat is needed to remove it from the substance in order to alter its condition.
<em>Reference: Berry, R. Stephen. "When the melting and freezing points are not the same." Scientific American 263.2 (1990): 68-75.</em>
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
Answer:
All of the above are true.
Explanation:
(a). true
whenever charge particle move back and froth from its mean position then it will produce oscillating electric and magnetic fields, . so an em wave can be obtain by accelerating charge
(b). true
the electric field and the magnetic field have vibrations in the perpendicular direction along the motion of the wave so electromagnetic wave is a transverse wave. therefore, the EM wave is a Transverse wave
(c) true .
The Electromagnetic wave consists of the two mutually perpendicular electric and magnetic fields and also both fields are perpendicular to the direction of propagation of the wave.
(d) true .
An electromagnetic wave carry energy through vacuum with a speed of
so , all of the above are true.
Answer:
62.5 %
Explanation:
Let the initial intensity of unpolarized light is Io.
After first polariser the intensity of light becomes I'.
So, 
Now it passes through another polariser. The angle between the first polariser and the second polariser is given by Ф. The intensity is I''.
According to the law of Malus

Here, Ф = 30 degree

The percentage change in the intensity is given by

= 62.5 %
An angle of refraction of 90-degrees