<h3><u>Answer;</u></h3>
Polar: IF, PCl3, IF5
Nonpolar: CS2, SO3, SF6
<h3><u>Explanation:</u></h3>
- Polar molecules form when two atoms do not share electrons equally in a covalent bond.
- A molecule is classified as a polar molecule when the arrangement of the atoms is such that one end of the molecule has a positive electrical charge and the other end has a negative charge.
- A non-polar molecule does not have electrical poles.The electrons are distributed more equally.
- Therefore, a non-polar molecule does not have a profusion of charges at the opposite ends. The majority of hydrocarbon liquids are non-polar molecules.
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation:
The two oxygen atoms share two pairs of electrons, so two covalent bonds hold the oxygen molecule together