Answer:
mixture is amino acid, peptides, carbohydrates and other simple organic compounds can be separated by paper chromatography.
Answer:
<h2>The first thing to do here is to use the molarity and the volume of the initial solution to figure out how many grams of copper(II) chloride it contains.</h2><h2 /><h2>133</h2><h2>mL solution</h2><h2>⋅</h2><h2>1</h2><h2>L</h2><h2>10</h2><h2>3</h2><h2>mL</h2><h2>⋅</h2><h2>7.90 moles CuCl</h2><h2>2</h2><h2>1</h2><h2>L solution</h2><h2>=</h2><h2>1.051 moles CuCl</h2><h2>2</h2><h2 /><h2>To convert this to grams, use the compound's molar mass</h2><h2 /><h2>1.051</h2><h2>moles CuCl</h2><h2>2</h2><h2>⋅</h2><h2>134.45 g</h2><h2>1</h2><h2>mole CuCl</h2><h2>2</h2><h2>=</h2><h2>141.31 g CuCl</h2><h2>2</h2><h2 /><h2>Now, you know that the diluted solution must contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride. As you know, when you dilute a solution, you increase the amount of solvent while keeping the amount of solute constant.</h2><h2 /><h2>This means that you must figure out what volume of the initial solution will contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride, the solute.</h2><h2 /><h2>4.49</h2><h2>g</h2><h2>⋅</h2><h2>133 mL solution</h2><h2>141.32</h2><h2>g</h2><h2>=</h2><h2>4.23 mL solution</h2><h2>−−−−−−−−−−−−−− </h2><h2 /><h2>The answer is rounded to three sig figs.</h2><h2 /><h2>You can thus say that when you dilute </h2><h2>4.23 mL</h2><h2> of </h2><h2>7.90 M</h2><h2> copper(II) chloride solution to a total volume of </h2><h2>51.5 mL</h2><h2> , you will have a solution that contains </h2><h2>4.49 g</h2><h2> of copper(II) chloride.</h2>
An investigator can collect hairs they observe visually (with tweezers or by hand), and they can also use clear tape to lift non-visible hair from a variety of surfaces, such as clothing. Other methods of hair sample collection include combing and clipping methods.
ALUMINIUM CANT FILL ITS ORBITAL EXCEPT ITS REACT WITH OTHER ELEMENT SO WHAT HAPPENS IS THE ALUMINIUM IS NOW A COMPOUND