Answer:
•cos(s+t) = cos(s)cos(t) - sin(s)sin(t) = (-⅖).(-⅗) - (√21 /5).(⅘) = +6/25 - 4√21 /25 = (6-4√21)/25
•cos(s-t) = cos(s)cos(t) + sin(s)sin(t) = (-⅖).(-⅗) + (√21 /5).(⅘) = +6/25 + 4√21 /25 = (6+4√21)/25
cos(t) = ±√(1 - sin²(t)) → -√(1 - sin²(t)) = -√(1 - (⅘)²) = -⅗
sin(s) = ±√(1 - cos²(s)) → +√(1- cos²(s)) = +√(1 - (-⅖)²) = √21 /5
Answer:
m = 7
m = -7
Step-by-step explanation:
To find if a series is either geometric or arithmetic:
it must satisfy this property:
Arithmetic:
a(n+1) - a(n) = const
Geometric:
a(n+1)/a(n) = const
In your case:
r1 = 7 -4 = 3
r2 = 12 - 7 = 5
r1 != r2 (not arirthmetic)
Geometric check:
r1 = 7/4
r2 = 12/7
r1 != r2 (not Geometric)
so neither.
Answer:
<h2>-5</h2>
Step-by-step explanation:
![A=\left[\begin{array}{ccc}a&b\\c&d\end{array}\right] \\\\\det A=\left|\begin{array}{ccc}a&b\\c&d\end{array}\right|=ad-bc](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5Cdet%20A%3D%5Cleft%7C%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%7C%3Dad-bc)
![\left\{\begin{array}{ccc}x+2y=5\\x-3y=7\end{array}\right\\\\A=\left[\begin{array}{ccc}1&2\\1&-3\end{array}\right] \\\\\det A=A=\left|\begin{array}{ccc}1&2\\1&-3\end{array}\right|=(1)(-3)-(1)(2)=-3-2=-5](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Dx%2B2y%3D5%5C%5Cx-3y%3D7%5Cend%7Barray%7D%5Cright%5C%5C%5C%5CA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C1%26-3%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5Cdet%20A%3DA%3D%5Cleft%7C%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C1%26-3%5Cend%7Barray%7D%5Cright%7C%3D%281%29%28-3%29-%281%29%282%29%3D-3-2%3D-5)