By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1
Answer:A vertex (or node) of a graph is one of the objects that are connected together. The connections between the vertices are called edges or links. A graph with 10 vertices (or nodes) and 11 edges (links).
Step-by-step explanation: (The vertex formula is derived from the completing-the-square process, just as is the Quadratic Formula. In each case, memorization is probably simpler than completing the square.) For a given quadratic y = ax2 + bx + c, the vertex (h, k) is found by computing h = –b/2a, and then evaluating y at h to find k.
Answer:
-0.28
Step-by-step explanation:
(-6)-(-8)=2.
7-14=-7
2/-7=-0.28