<span>1) Write the point-slope form of the equation of the horizontal line that passes through the point (2, 1). y = 1/2x
2)Write the point-slope form of the equation of the line that passes through the points (6, -9) and (7, 1).
m = (-9 - 1) / (6 - 7) = -10/-1 = 10
y + 9 = 10 (x - 6)
y = 10x - 69
3) A line passes through the point (-6, 6) and (-6, 2). In two or more complete sentences, explain why it is not possible to write the equation of the given line in the traditional version of the point-slope form of a line.
4)Write the point-slope form of the equation of the line that passes through the points (-3, 5) and (-1, 4).
m = (5 - 4) / (-3 - -1) = 1/-2
y - 5 = (-1/2) (x +3)
y = (-1/2)x + 7/2
5) Write the point-slope form of the equation of the line that passes through the points (6, 6) and (-6, 1).
m = (6-1)/(6 - -6) = 5 / 12
y - 6 = (5/12) (x-6)
y = (5/12)x + 17 / 2
6) Write the point-slope form of the equation of the line that passes through the points (-8, 2) and (1, -4).
m = (2 - -4) / (-8 -1) = 6 / -7
y - 2 = (-6/7) (x + 8)
y = (-6/7)x - 50 / 7
7) Write the point-slope form of the equation of the line that passes through the points (5, -9) and (-6, 1).
m = (-9 - 1) / (5 - -6) = -10 / 11
y + 9 = (-10 / 11) (x - 5)
y = (-10 / 11)x -49/11
</span>
So this first wants you to find where sin is √3/2 when θ is between π and 3π/2. θ would therefore be located at 2π/3.
Now plug in the value of θ for cosine:
cos (2π/3) = -1/2
And tangent:
tan (2π/3) = -√3/3
|a| = -a for a < 0
|a| = a for a ≥ 0
examples:
|-1| = -(-1) = 1; |-4| = -(-4) = 4; |-0.1| = 0.1; |-109| = 109
|7| = 7; |19| = 19; |0| = 0
- |-7 + 4| = - |-3| = - (3) = -3
Answer: -|-7 + 4| = -3
Answer:
Therefore all numbers that end with five and are greater than five are composite numbers. The prime numbers between 2 and 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.
Step-by-step explanation:
The Unique Shape Theorem states that all regular polygons with the same number of sides are similar to each other. And the immediate result of this theorem is that there is one unique shape for them.