Answer:
<em>The horizontal component of the velocity is 49.85 m/s.</em>
Explanation:
<u>Rectangular Components of a Vector</u>
A 2D vector can be expressed in several forms. The rectangular form gives its two components, one for each axis (x,y). The polar form gives the components as the pair (r,θ) being r the magnitude and θ the angle.
When the magnitude and angle of the vector are given, the rectangular components are calculated as follows:


Where v is the magnitude of the vector and θ is the angle with respect to the x positive direction.
The cart is moving at v=55 m/s at θ=25°, thus:


The horizontal component of the velocity is 49.85 m/s.
<span>d = 950 m - 4.9t^2 m
The distance an object moves under constant acceleration is
d = 0.5at^2
where
d = distance
a = acceleration
t = time.
Since we're falling and since we're starting at 950 m above ground, the formula becomes:
d = 950 m - 0.5at^2
Substituting known values, and simplifying gives us
d = 950 m - 0.5*9.8 m/s^2 * t^2
d = 950 m - 4.9 m/s^2 * t^2
Since time is in seconds, we can cancel out the seconds in the units, getting
d = 950 m - 4.9t^2 m</span>