Answer:
784
Step-by-step explanation:
you take the 49 and times is by 16
there are 4 sides
Answer:
a=28/5 or 5.6
Step-by-step explanation:
2a/7=a-4
Multiple both sides of the equation by 7
2a=7a-28
Subtract 7a from both side
2a-7a=-28
Like Term
-5a=-26
Divide -5 from both side
a= 5.6
Hi there!
So we are given that:-
- tan theta = 7/24 and is on the third Quadrant.
In the third Quadrant or Quadrant III, sine and cosine both are negative, which makes tangent positive.
Since we want to find the value of cos theta. cos must be less than 0 or in negative.
To find cos theta, we can either use the trigonometric identity or Pythagorean Theorem. Here, I will demonstrate two ways to find cos.
<u>U</u><u>s</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>I</u><u>d</u><u>e</u><u>n</u><u>t</u><u>i</u><u>t</u><u>y</u>

Substitute tan theta = 7/24 in.

Evaluate.

Reminder -:

Hence,

Because in QIII, cos<0. Hence,

<u>U</u><u>s</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>P</u><u>y</u><u>t</u><u>h</u><u>a</u><u>g</u><u>o</u><u>r</u><u>e</u><u>a</u><u>n</u><u> </u><u>T</u><u>h</u><u>e</u><u>o</u><u>r</u><u>e</u><u>m</u>

Define c as our hypotenuse while a or b can be adjacent or opposite.
Because tan theta = opposite/adjacent. Therefore:-

Thus, the hypotenuse side is 25. Using the cosine ratio:-

Therefore:-

Because cos<0 in Q3.

Hence, the value of cos theta is -24/25.
Let me know if you have any questions!
A = pi(r)^2
a= pi (14)^2
a=196pi
Step-by-step explanation:
(x/z)=3 (7/5)= x'2
tis is the right answer
plz mark me branlists