1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
3 years ago
15

Caleb made $105 mowing lawns and walking dogs, charging the rates shown. If he mowed half as many lawns as dogs walked, how many

lawns did he now and how many dogs did he walk?
Mathematics
1 answer:
Vlada [557]3 years ago
6 0

Question is Incomplete;Complete question is given below;

Caleb made $105 mowing lawns and walking dogs, charging the rates shown. If he mowed half as many lawns as dogs walked, how many lawns did he mow and how many dogs did he walk? $7.50 for walking dogs and $20 for mowing lawns

Answer:

Caleb mowed 3 lawns and walked 10 dogs.

Step-by-step explanation:

Let the number of dogs he walked be 'd'.

Let number of lawn he mowed be 'l'.

Given:

If he mowed half as many lawns as dogs walked

So we can say that;

l=\frac{1}{2}d=0.5d \ \ \ \ equation\ 1

Now given:

Cost for mowing each lawn = $20

Cost for walking each dog = $7.50

Total amount made = $105

Now we can say that;

Total amount made is equal to Cost for mowing each lawn multiplied by number of lawn he mowed and Cost walking each dog multiplied by number of lawn he mowed.

framing in equation form we get;

20l+7.5d=105 \ \ \ \ \ equation \ 2

Substituting equation 1 in equation 2 we get;

20(0.5d)+7.5d=105

Applying distributive property we get;

10d+7.5d=105\\\\17.5d=105

Dividing both side by 17.5 we get;

\frac{17.5d}{17.5}=\frac{105}{17.5}\\\\d= 6

Substituting the value of 'd' in equation 1 we get;

l=0.5d=0.5\times6=3

Hence Caleb mowed 3 lawns and walked 10 dogs.

You might be interested in
Solve for x.3(3x - 1) + 2(3 - x) = 0
mote1985 [20]
9x-3+6-2x=0
7x+3=0
X=-3/7
5 0
3 years ago
Read 2 more answers
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
Read 2 more answers
4-Fui al supermercado y había un descuento del 15% en el total de la compra, si pagaba en efectivo. Gasté $ 2.400. ¿Qué cantidad
Grace [21]

Answer:

$2.040

Step-by-step explanation:

Para calcular la cantidad que fue abonada en realidad, debes encontrar el valor del descuento calculando el 15% del valor total de la compra y este resultado se debe restar del total:

$2.400*15%= $360

$2.400-$360= $2.040

De acuerdo a esto, la cantidad abonada en realidad es: $2.040.

6 0
3 years ago
At one particular store, the sale price, s, is always 75% of the display price, d
sattari [20]

Answer:

0.75d

Step-by-step explanation:

<u>Step 1:  Convert words into an expression</u>

At one particular store, the sale price, s, is always 75% of the display price, d

d is the display price

%75 they are always off

d*%75

d * 0.75

<em>0.75d</em>

<em />

Answer:  0.75d

5 0
3 years ago
Help please
stepladder [879]

Answer:

The answer is d) 480cm³

Step-by-step explanation:

3 x 10 x 16 = 480cm³

3 0
2 years ago
Other questions:
  • Question 3<br> Find the constant of variation (k).<br><br> -y + 9x = 0
    15·1 answer
  • Draw a model to show a fraction that is equivalent to 1/3 and a fraction that is not equivalent to 1/3
    15·1 answer
  • SOMEONE PLEASE HELP ME I HAVE 10 MINUTES LEFT
    7·2 answers
  • Asquare and a circle intersect so that each side of the square contains a chord of the circle equal in length to the radius of t
    12·1 answer
  • Every hour is 65 miles so how long does it take the car to travel 26 miles at this speed?
    9·1 answer
  • The expression 2l + 2w is used to find the perimeter of a rectangle with length l and width w. What is the perimeter of a rectan
    9·1 answer
  • What value of x makes the equation true? 15(2x−10)+4x=−3(15x+4)
    5·1 answer
  • Need help take your time and thx
    9·1 answer
  • solve 49x + 9 equals 49x + 83. does an equation have one solution, no solution, or infinitely many solutions? write two equation
    6·2 answers
  • Solve |√2-y| = |y-√2|
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!