One complete period of a non-transformed cotangent function is π.
The period of the function is defined as the interval after which the function value repeats itself.
For example, f(T+x)=f(x)
where T is the period of the function.
Here given that there is a non-transformed function cotangent function.
We have to find the period of the function in which interval the value of the function will repeat.
So for the function y=f(x)=cot x
the period of the function is π. means after π the value of the cotangent repeats.
cot(π+x)=cot x
Then one cycle of the cotangent graph lies between 0 and π.
Therefore One complete period of a non-transformed cotangent function is π.
Learn more about period of the function
here: brainly.com/question/3511043
#SPJ10
Answer:
37.5
Step-by-step explanation:
37.5 · 0.72 = 27