1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
13

A point where two or more angle bisector meet is called ?

Mathematics
1 answer:
weeeeeb [17]3 years ago
8 0

Answer:

<h3>.Incenter</h3>

Step-by-step explanation:

it shows the center

or the center of an angle

You might be interested in
HELLLLLLLLLLLLLLP PLLLLLLLSSS, I NEED HELP WITH THIS ANSWER
vlabodo [156]
It would be -4, and 9.2 because they sign is saying that x is less than or equal too 11.
8 0
3 years ago
Read 2 more answers
Jackie bought a game that contained a ball and 10 jacks. The ball had a radius of 2 inches. What is the volume of the ball? Roun
defon
V = 1¹/₃πr³
V = 1¹/₃(3.14)(2)³
V = 1¹/₃(3.14)(8)
V = 1¹/₃(25.12)
V ≈ 33.493 in³
4 0
4 years ago
Taylor Series Questions!
riadik2000 [5.3K]
5.
f(x)=\sin x\implies f(\pi)=0
f'(x)=\cos x\implies f'(\pi)=-1
f''(x)=-\sin x\implies f''(\pi)=0
f'''(x)=-\cos x\implies f'''(\pi)=1

Clearly, each even-order derivative will vanish, and the terms that remain will alternate in sign, so the Taylor series is given by

f(x)=-(x-\pi)+\dfrac{(x-\pi)^3}{3!}-\dfrac{(x-\pi)^5}{5!}+\cdots
f(x)=\displaystyle\sum_{n\ge0}\frac{(-1)^{n-1}(x-\pi)^{2n+1}}{(2n+1)!}

Your answer is off by a sign - the source of this error is the fact that you used the series expansion centered at x=0, not x=\pi, and so the sign on each derivative at x=\pi is opposite of what it should be. I'm sure you can figure out the radius of convergence from here.

- - -

6. Note that this is already a polynomial, so the Taylor series will strongly resemble this and will consist of a finite number of terms. You can get the series by evaluating the derivatives at the given point, or you can simply rewrite the polynomial in x as a polynomial in x-2.

f(x)=x^6-x^4+2\implies f(2)=50
f'(x)=6x^5-4x^3\implies f'(2)=160
f''(x)=30x^4-12x^2\implies f''(2)=432
f'''(x)=120x^3-24x\implies f'''(2)=912
f^{(4)}(x)=360x^2-24\implies f^{(4)}(2)=1416
f^{(5)}(x)=720x\implies f^{(5)}(2)=1440
f^{(6)}(x)=720\implies f^{(6)}(2)=720
f^{(n\ge7)}(x)=0\implies f^{(n\ge7)}(2)=0

\implies f(x)=50+160(x-2)+216(x-2)^2+152(x-2)^3+59(x-2)^4+12(x-2)^5+(x-2)^6

If you expand this, you will end up with f(x) again, so the Taylor series must converge everywhere.

I'll outline the second method. The idea is to find coefficients so that the right hand side below matches the original polynomial:

x^6-x^4+2=(x-2)^6+a_5(x-2)^5+a_4(x-2)^4+a_3(x-2)^3+a_2(x-2)^2+a_1(x-2)+a_0

You would expand the right side, match up the coefficients for the same-power terms on the left, then solve the linear system that comes out of that. You would end up with the same result as with the standard derivative method, though perhaps more work than necessary.

- - -

7. It would help to write the square root as a rational power first:

f(x)=\sqrt x=x^{1/2}\implies f(4)=2
f'(x)=\dfrac{(-1)^0}{2^1}x^{-1/2}\implies f'(4)=\dfrac1{2^2}
f''(x)=\dfrac{(-1)^1}{2^2}x^{-3/2}\implies f''(4)=-\dfrac1{2^5}
f'''(x)=\dfrac{(-1)^2(1\times3)}{2^3}x^{-5/2}\implies f'''(4)=\dfrac3{2^8}
f^{(4)}(x)=\dfrac{(-1)^3(1\times3\times5)}{2^4}x^{-7/2}\implies f^{(4)}(4)=-\dfrac{15}{2^{11}}
f^{(5)}(x)=\dfrac{(-1)^4(1\times3\times5\times7)}{2^5}x^{-9/2}\implies f^{(5)}(4)=\dfrac{105}{2^{14}}

The pattern should be fairly easy to see.

f(x)=2+\dfrac{x-4}{2^2}-\dfrac{(x-4)^2}{2^5\times2!}+\dfrac{3(x-4)^3}{2^8\times3!}-\dfrac{15(x-4)^4}{2^{11}\times4!}+\cdots
f(x)=2+\displaystyle\sum_{n\ge1}\dfrac{(-1)^n(-1\times1\times3\times5\times\cdots\times(2n-3)}{2^{3n-1}n!}(x-4)^n

By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{\dfrac{(-1)^{n+1}(-1\times\cdots\times(2n-3)\times(2n-1))(x-4)^{n+1}}{2^{3n+2}(n+1)!}}{\dfrac{(-1)^n(-1\times\cdots\tiems(2n-3))(x-4)^n}{2^{3n-1}n!}}\right|
\implies\displaystyle\frac{|x-4|}8\lim_{n\to\infty}\frac{2n-1}{n+1}=\frac{|x-4|}4
\implies |x-4|

so that the ROC is 4.

- - -

10. Without going into much detail, you should have as your Taylor polynomial

\sin x\approx T_4(x)=\dfrac12+\dfrac{\sqrt3}2\left(x-\dfrac\pi6\right)-\dfrac14\left(x-\dfrac\pi6\right)^2-\dfrac1{4\sqrt3}\left(x-\dfrac\pi6\right)^3+\dfrac1{48}\left(x-\dfrac\pi6\right)^4

Taylor's inequality then asserts that the error of approximation on the interval 0\le x\le\dfrac\pi3 is given by

|\sin x-T_4(x)|=|R_4(x)|\le\dfrac{M\left|x-\frac\pi6\right|^5}{5!}

where M satisfies |f^{(5)}(x)|\le M on the interval.

We know that (\sin x)^{(5)}=\cos x is bounded between -1 and 1, so we know M=1 will suffice. Over the given interval, we have \left|x-\dfrac\pi6\right|\le\dfrac\pi6, so the remainder will be bounded above by

|R_4(x)|\le\dfrac{1\times\left(\frac\pi6\right)^5}{5!}=\dfrac{\pi^5}{933120}\approx0.000328

which is to say, over the interval 0\le x\le\dfrac\pi3, the fourth degree Taylor polynomial approximates the value of \sin x near x=\dfrac\pi6 to within 0.000328.
7 0
4 years ago
3c=3<br><br><br><br><br>HELPP PLEASE NEED HELPPPP
scoundrel [369]
Divide the 3 from the 3c, and move over towards the 3 on the right side of the equation. 3 ÷ 3 = 1, so c = 1.
6 0
3 years ago
Read 2 more answers
Give an example of why division is not commutative.
ArbitrLikvidat [17]
Example:

4 ÷ 2 = 2 but 2 ÷ 4 = 0.5

In general a ÷ b ≠ b ÷ a, then division is not commutative
4 0
3 years ago
Other questions:
  • How do you know if an agle is congruent
    14·2 answers
  • a zucchini plant in Darnell's Garden was 12 centimeters tall when it was first planted since then he has gone approximately 0.5
    8·1 answer
  • X2 + y2 – 4x + 10y + 4 = 0.<br> find the center and radius of a circle
    11·1 answer
  • X(1+3)= x +3x is an example of which algebraic property?
    13·2 answers
  • Simplify the expression to standard form<br><br> -2.5(-3+ 4n+8)
    9·2 answers
  • Make t the subject of the formula
    7·1 answer
  • Bill needs to edge his yard with the dimensions in the shape below. What area will he have walked after completing his edging? R
    6·1 answer
  • Aaaaa it like a test
    15·2 answers
  • HELP PLEASE!<br> I need the code to this last puzzle!
    7·1 answer
  • Compare the following ratios: (Use &gt;, &lt; or = sign in the place holders)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!