Answer:

Step-by-step explanation:
Slope is equal to the change in y over the change in x.

The change in x is equal to the difference in x-coordinates, and the change in y is equal to the difference in y-coordinates .

Substitute in the values of x and y into the equation to find the slope.

Simplify.

<u>Hence</u><u>,</u><u> </u><u>the</u><u> </u><u>slope</u><u> </u><u>is</u><u> </u><u>3</u><u>/</u><u>4</u><u>.</u>
Answer:

Step-by-step explanation:
Given
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
Required
Find 
We have:
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
Using integration by parts

Where
and 
Solve for du (differentiate u)

Solve for v (integrate dv)

So, we have:




-----------------------------------------------------------------------
Solving

Integration by parts
---- 
---------- 
So:



So, we have:

![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x} -\frac{1}{4}e^{-4x}]](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7Bx%5E2%7D%7B4%7De%5E%7B-4x%7D%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B%20-%5Cfrac%7Bx%7D%7B4%7De%5E%7B-4x%7D%20%20-%5Cfrac%7B1%7D%7B4%7De%5E%7B-4x%7D%5D)
Open bracket

Factor out 
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7Bx%5E2%7D%7B4%7D%20-%5Cfrac%7Bx%7D%7B8%7D%20-%5Cfrac%7B1%7D%7B8%7D%5De%5E%7B-4x%7D)
Rewrite as:
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7B1%7D%7B4%7Dx%5E2%20-%5Cfrac%7B1%7D%7B8%7Dx%20-%5Cfrac%7B1%7D%7B8%7D%5De%5E%7B-4x%7D)
Recall that:
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7B1%7D%7B64%7DAx%5E2%20-%5Cfrac%7B1%7D%7B64%7D%20Bx%20-%5Cfrac%7B1%7D%7B64%7D%20E%5DCe%5E%7B-4x%7D)
By comparison:



Solve A, B and C

Divide by 

Multiply by 64



Divide by 

Multiply by 64



Multiply by -64


So:


All you need to do is <u>Divide</u><u /> 84 from 672.