The equation for cosine is <span><span><span>cos<span>(x)</span></span>=<span>Adjacent/Hypotenuse
</span></span></span>The inside trig function is <span><span>arccos<span>(<span>3/5</span>)</span></span></span>, which means <span><span><span>cos<span>(x)</span></span>=<span>3/5</span></span></span>. Comparing <span><span><span>cos<span>(x)</span></span>=<span>Adjacent/Hypotenuse</span></span></span> with <span><span><span>cos<span>(x)</span></span>=<span>3/5
</span></span></span>
Find <span><span>Adjacent=3</span></span> and <span><span>Hypotenuse=5.
</span></span>Then, using the Pythagorean theorem, find <span><span>Opposite=?
</span></span>a² = c² - b²
a² = 5² - 3² = 25 - 9 = 16
a = √16 = 4
<span><span>Adjacent=3</span></span><span><span>Opposite=4</span></span><span><span>Hypotenuse=5
</span></span><span>
Plug in the value for sin(x) = opposite/hypotenuse
sin(x) = 4/5 </span>
No because when you cross multiply 9/24 has a bigger number
The solution would be like
this for this specific problem:
<span>V = ∫ dV </span><span>
<span>= ∫0→2 ∫
0→π/2 ∫ 0→ 2·r·sin(φ) [ r ] dzdφdr </span>
<span>= ∫0→2 ∫
0→π/2 [ r·2·r·sin(φ) - r·0 ] dφdr </span>
<span>= ∫0→2 ∫
0→π/2 [ 2·r²·sin(φ) ] dφdr </span>
<span>= ∫0→2 [
-2·r²·cos(π/2) + 2·r²·cos(0) ] dr </span>
<span>= ∫0→2 [
2·r² ] dr </span>
<span>=
(2/3)·2³ - (2/3)·0³ </span>
<span>= 16/3 </span></span>
So the volume of the
given solid is 16/3. I am hoping that these answers have satisfied
your query and it will be able to help you in your endeavors, and if you would
like, feel free to ask another question.
The answer is A.
Ordered pairs that equate to a function would not have two separate points with the same x-value. In other words, every x-value must be associated with only one y-value.