Answer: x = -2, y = 4
Step-by-step explanation:
Where the lines intersect on the graph.
X coordinate is x, Y coordinate is y.
Answer:
x=3
z=65
Step-by-step explanation:
6x+97 and 14x+73 are vertical angles which means they are equal
6x+97= 14x+73
Subtract 6x from each side
6x-6x+97= 14x-6x+73
97 = 8x +73
Subtract 73 from each side
97-73 = 8x+73-73
24 = 8x
Divide each side by 8
24/8 = 8x/8
3 = x
Now we need to find z
6x+97 and z are supplementary angles which means they add to 180
6x+97 +z = 180
6(3) +97 +z = 180
18+97+z=180
Combine like terms
115+z = 180
Subtract 115 from each side
115-115 +z=180-115
z = 65
Let:
100%---------------->24h
30%------------------>xh
Using cross multiplication:
Answer:
See explanation
Step-by-step explanation:
Given:
![A=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D)
A. Find AB:
![AB=\left[\begin{array}{cc}-2&4\\1&3\end{array}\right]\cdot \left[\begin{array}{cc}-2&1\\3&7\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+4\cdot 3&-2\cdot 1+4\cdot 7\\1\cdot (-2)+3\cdot 3&1\cdot 1+3\cdot 7\end{array}\right]=\left[\begin{array}{cc}16&26\\7&22\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%5Ccdot%20%28-2%29%2B4%5Ccdot%203%26-2%5Ccdot%201%2B4%5Ccdot%207%5C%5C1%5Ccdot%20%28-2%29%2B3%5Ccdot%203%261%5Ccdot%201%2B3%5Ccdot%207%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D16%2626%5C%5C7%2622%5Cend%7Barray%7D%5Cright%5D)
B. Find BA:
![BA=\left[\begin{array}{cc}-2&1\\3&7\end{array}\right]\cdot \left[\begin{array}{cc}-2&4\\1&3\end{array}\right]=\left[\begin{array}{cc}-2\cdot (-2)+1\cdot 1&-2\cdot 4+1\cdot 3\\3\cdot (-2)+7\cdot 1&3\cdot 4+7\cdot 3\end{array}\right]=\left[\begin{array}{cc}5&-5\\1&33\end{array}\right]](https://tex.z-dn.net/?f=BA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%267%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%264%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%5Ccdot%20%28-2%29%2B1%5Ccdot%201%26-2%5Ccdot%204%2B1%5Ccdot%203%5C%5C3%5Ccdot%20%28-2%29%2B7%5Ccdot%201%263%5Ccdot%204%2B7%5Ccdot%203%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%26-5%5C%5C1%2633%5Cend%7Barray%7D%5Cright%5D)
C. Answers are not the same
D. Matrices multiplication is not commutastive in general, so

Yes, depending on the number.