1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stella [2.4K]
3 years ago
14

Can Somebody Solve This Equation ?

Mathematics
2 answers:
Brums [2.3K]3 years ago
6 0
Yes. you got the idea. you just need to plug 9 in for X because X=cost for months. 10+30(9)=?
c=$280
fiasKO [112]3 years ago
4 0

C= 10+30x

X=9 here so

C= 20+30(9)

So

C=290

You might be interested in
Evaluate the function for <br> f (2) = x^3 - 2<br><br> A.4 <br> B.6 <br> C.8<br> D.10
ElenaW [278]

Answer:

A. 4

Step-by-step explanation:

Hope this helps!

5 0
3 years ago
Read 2 more answers
A store owner buys a sweater at $12 and sells it for $15. What was the
Colt1911 [192]

Answer:

it would be a 25% increase.

Step-by-step explanation:

15-12 / 12 * 100 =

3/12 * 100 = 25

3 0
2 years ago
Make the following conversion. 240 hm = ____ m 2.40 0.240 24,000 240,000
balu736 [363]

100 meters in a hectometers   So basically 1hectameter=100 meters   240hm=240(100)=24,000 meters

3 0
3 years ago
Read 2 more answers
I need help.. i really want to go sleep.. thank you so much...
Effectus [21]

Answer:

1) True 2) False

Step-by-step explanation:

1) Given  \sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i}

To verify that the above equality is true or false:

Now find \sum\limits_{k=0}^8\frac{1}{k+3}

Expanding the summation we get

\sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{0+3}+\frac{1}{1+3}+\frac{1}{2+3}+\frac{1}{3+3}+\frac{1}{4+3}+\frac{1}{5+3}+\frac{1}{6+3}+\frac{1}{7+3}+\frac{1}{8+3} \sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

Now find \sum\limits_{i=3}^{11}\frac{1}{i}

Expanding the summation we get

\sum\limits_{i=3}^{11}\frac{1}{i}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

 Comparing the two series  we get,

\sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i} so the given equality is true.

2) Given \sum\limits_{k=0}^4\frac{3k+3}{k+6}=\sum\limits_{i=1}^3\frac{3i}{i+5}

Verify the above equality is true or false

Now find \sum\limits_{k=0}^4\frac{3k+3}{k+6}

Expanding the summation we get

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3(0)+3}{0+6}+\frac{3(1)+3}{1+6}+\frac{3(2)+3}{2+6}+\frac{3(3)+4}{3+6}+\frac{3(4)+3}{4+6}

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}+\frac{12}{8}+\frac{15}{10}

now find \sum\limits_{i=1}^3\frac{3i}{i+5}

Expanding the summation we get

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3(0)}{0+5}+\frac{3(1)}{1+5}+\frac{3(2)}{2+5}+\frac{3(3)}{3+5}

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}

Comparing the series we get that the given equality is false.

ie, \sum\limits_{k=0}^4\frac{3k+3}{k+6}\neq\sum\limits_{i=1}^3\frac{3i}{i+5}

6 0
3 years ago
Solve: 9-2x = 4x + 33
worty [1.4K]
Simplifying
4x+-9= 2x + 33
Reorder the terms:
-9+4x = -2x + 33
Reorder the terms:
-9 + 4x = 33 + -2x
Solving:
-9 + 4x = 33 + -2x
Answer: x = 7
6 0
3 years ago
Other questions:
  • 11 minus the product of 5 and a number k
    9·1 answer
  • tom went to a park that is the shape of a square if he runs a total of 8 miles around the park how far would it have been if he
    5·1 answer
  • How many 3/4 are in a whole
    9·1 answer
  • Simplify: 3√5⋅√10+11√5⋅√10−√5<br> 26√50<br><br> 14√15−√5<br><br> 14√50−√5<br><br> 6√35
    12·1 answer
  • What’s this ????????
    8·2 answers
  • Explain the Error: Jayme tells her friend that ordered pairs that have an x-coordinate of O lie on the x-axis. She uses the orig
    7·1 answer
  • ) Consider point p = (0, 0, 0) of paraboloid z = x 2 + ky2 , k &gt; 0. (a) Show that the unit vectors of x-axis and y-axis are e
    12·1 answer
  • What is the measure of arc ECF in circle G?<br><br> 52°<br> 98° <br> 158° <br> 177°
    8·1 answer
  • Ingrid dug a trench 18/20 of a meter long. the next day she dug 9/20 of a meter more of the trench. what is a reasonable estimat
    13·1 answer
  • What is the solution set for this inequality
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!