Answer:
Step-by-step explanation:
Let x be the random variable representing the times a fire department takes to arrive at the scene of an emergency. Since the population mean and population standard deviation are known, we would apply the formula,
z = (x - µ)/σ
Where
x = sample mean
µ = population mean
σ = standard deviation
From the information given,
µ = 6 minutes
σ = 1 minute
the probability that fire department arrives at the scene in case of an emergency between 4 minutes and 8 minutes is expressed as
P(4 ≤ x ≤ 8)
For x = 4,
z = (4 - 6)/1 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.023
For x = 8
z = (8 - 6)/1 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.98
Therefore,
P(4 ≤ x ≤ 8) = 0.98 - 0.23 = 0.75
The percent of emergencies that the fire department arrive at the scene in between 4 minutes and 8 minutes is
0.75 × 100 = 75%
Answer: 250 years
Step-by-step explanation:
12/3=4
4 x $1 = $4 per year
$1000/4=250
250 years
that would definitely be 800,000 because 751,447 is much more closer to 800,000 than 700,000
The least number of socks that rob can remove to guarantee he removed a pair of white socks without looking is15 socks