Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
To solve the food one you need to first multiply the pounds of peaches by the amount per pound (1.75 * 18.4) then when you have the total of that, add 2.89 for the price of the pineapple. Once that is complete you should have a total amount for all of the food, next you just divide that number by 4 and you'll have the amount of money each person paid.
As for the other question, to solve it all you need to do is add the total amount of pounds of trash team A has collected for both week 1, 2 and 3, then multiply it by 3 and you'll have your answer.
Answer:
2,7
Step-by-step explanation:
See image below:)
<h2>>>> Answer <<<</h2>
Let's check which polynomial is divisible by ( x - 1 ) using hit , trial and error method .
A ( x ) = 3x³ + 2x² - x
The word " divisible " itself says that " it is a factor "
Using factor theorem ;
Let;
=> x - 1 = 0
=> x = 1
Substitute the value of x in p ( x )
p ( 1 ) =
3 ( 1 )³ + 2 ( 1 )² - 1
3 ( 1 ) + 2 ( 1 ) - 1
3 + 2 - 1
5 - 1
4
This implies ;
A ( x ) is not divisible by ( x - 1 )
Similarly,
B ( x ) = 5x³ - 4x² - x
B ( 1 ) =
5 ( 1 )³ - 4 ( 1 )² - 1
5 ( 1 ) - 4 ( 1 ) - 1
5 - 4 - 1
5 - 5
0
This implies ;
B ( x ) is divisible by ( x - 1 )
Similarly,
C ( x ) = 2x³ - 3x² + 2x - 1
C ( 1 ) =
2 ( 1 )³ - 3 ( 1 )² + 2 ( 1 ) - 1
2 ( 1 ) - 3 ( 1 ) + 2 - 1
2 - 3 + 2 - 1
4 - 4
0
This implies ;
C ( x ) is divisible by ( x - 1 )
Similarly,
D ( x ) = x³ + 2x² + 3x + 2
D ( 1 ) =
( 1 )³ + 2 ( 1 )² + 3 ( 1 ) + 2
1 + 2 + 3 + 2
8
This implies ;
D ( x ) is not divisible by ( x - 1 )
<h2>Therefore ; </h2>
<h3>B ( x ) & C ( x ) are divisible by ( x - 1 ) </h3>
Answer:
1 out of a 50% chance
Step-by-step explanation:
hope it helps