Answer:
A)
![f'(x) = \left\{ \begin{array}{lIl} \frac{1}{2} & \quad x >2 \\ 0& \quad x =2\\1&\quad x](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%20%5Cleft%5C%7B%20%20%20%20%20%20%20%20%5Cbegin%7Barray%7D%7BlIl%7D%20%20%20%20%20%20%20%20%20%20%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cquad%20x%20%3E2%20%5C%5C%20%20%20%20%20%20%20%20%20%20%20%200%26%20%5Cquad%20x%20%3D2%5C%5C1%26%5Cquad%20x%3C2%20%20%20%20%20%20%20%20%5Cend%7Barray%7D%20%20%20%20%5Cright.)
B) Continuous but not differentiable.
Step-by-step explanation:
So we have the piecewise function:
![f(x) = \left\{ \begin{array}{lIl} \frac{1}{2}x+5 & \quad x >2 \\ 6& \quad x =2\\x +4&\quad x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%5C%7B%20%20%20%20%20%20%20%20%5Cbegin%7Barray%7D%7BlIl%7D%20%20%20%20%20%20%20%20%20%20%20%20%5Cfrac%7B1%7D%7B2%7Dx%2B5%20%26%20%5Cquad%20x%20%3E2%20%5C%5C%20%20%20%20%20%20%20%20%20%20%20%206%26%20%5Cquad%20x%20%3D2%5C%5Cx%20%2B4%26%5Cquad%20x%3C2%20%20%20%20%20%20%20%20%5Cend%7Barray%7D%20%20%20%20%5Cright.)
A)
To write the differentiated piecewise function, let's differentiate each equation separately. Thus:
1)
![\frac{d}{dx}[\frac{1}{2}x+5}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%7D%7B2%7Dx%2B5%7D%5D)
Expand:
![\frac{d}{dx}[\frac{1}{2}x]+\frac{d}{dx}[5]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%7D%7B2%7Dx%5D%2B%5Cfrac%7Bd%7D%7Bdx%7D%5B5%5D)
The derivative of a linear equation is just the slope. The derivative of a constant is 0. Thus:
![\frac{d}{dx}[\frac{1}{2}x+5}]=\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%7D%7B2%7Dx%2B5%7D%5D%3D%5Cfrac%7B1%7D%7B2%7D)
2)
![\frac{d}{dx}[6]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B6%5D)
Again, the derivative of a constant is 0. Thus:
![\frac{d}{dx}[6]=0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5B6%5D%3D0)
3)
We have:
![\frac{d}{dx}[x+4]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%2B4%5D)
Expand:
![\frac{d}{dx}[x]+\frac{d}{dx}[4]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%2B%5Cfrac%7Bd%7D%7Bdx%7D%5B4%5D)
Simplify:
![=1](https://tex.z-dn.net/?f=%3D1)
Now, let's substitute our original equations for the differentiated equations. The inequalities will stay the same. Therefore:
![f'(x) = \left\{ \begin{array}{lIl} \frac{1}{2} & \quad x >2 \\ 0& \quad x =2\\1&\quad x](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%20%5Cleft%5C%7B%20%20%20%20%20%20%20%20%5Cbegin%7Barray%7D%7BlIl%7D%20%20%20%20%20%20%20%20%20%20%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cquad%20x%20%3E2%20%5C%5C%20%20%20%20%20%20%20%20%20%20%20%200%26%20%5Cquad%20x%20%3D2%5C%5C1%26%5Cquad%20x%3C2%20%20%20%20%20%20%20%20%5Cend%7Barray%7D%20%20%20%20%5Cright.)
B)
For a function to be differentiable at a point, the function <em>must </em>be a) continuous at that point, and b) the left and right hand derivatives must be equivalent.
Let's first determine if the function is continuous at the point. Remember that a function is continuous at a point if and only if:
![\lim_{x \to n^-} f(n)= \lim_{x \to n^+}f(n)=f(n)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20n%5E-%7D%20f%28n%29%3D%20%5Clim_%7Bx%20%5Cto%20n%5E%2B%7Df%28n%29%3Df%28n%29)
Let's find the left hand limit of f(x) at it approaches 2.
![\lim_{x \to 2^-}f(x)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%202%5E-%7Df%28x%29)
Since it's coming from the left, let's use the third equation:
![\lim_{x \to 2^-}f(x)\\=\lim_{x \to 2^-}(x+4)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%202%5E-%7Df%28x%29%5C%5C%3D%5Clim_%7Bx%20%5Cto%202%5E-%7D%28x%2B4%29)
Direct substitution:
![=(2+4)=6](https://tex.z-dn.net/?f=%3D%282%2B4%29%3D6)
So:
![\lim_{x \to 2^-}f(x)=6](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%202%5E-%7Df%28x%29%3D6)
Now, let's find the right-hand limit:
![\lim_{x \to 2^+}f(x)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%202%5E%2B%7Df%28x%29)
Since we're coming from the right, let's use the first equation:
![\lim_{x \to 2^+}(\frac{1}{2}x+5)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%202%5E%2B%7D%28%5Cfrac%7B1%7D%7B2%7Dx%2B5%29)
Direct substitution:
![(\frac{1}{2}(2)+5)](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%282%29%2B5%29)
Multiply and add:
![=6](https://tex.z-dn.net/?f=%3D6)
So, both the left and right hand limits are equivalent. Now, find the limit at x=2.
From the piecewise function, we can see that the value of f(2) is 6.
Therefore, the function is continuous at x=2.
Now, let's determine differentiability at x=2.
For a function to be differentiable at a point, both the right hand and left hand derivatives must be equivalent.
So, let's find the derivative of the function as x approahces 2 from the left and from the right.
From the differentiated piecewise function, we can see that as x approaches 2 from the left, the derivative is 1.
As x approaches 2 from the right, the derivative is 1/2.
Therefore, the right and left hand derivatives are <em>not</em> the same.
Thus, the function is continuous but <em>not</em> differentiable.