The formula for the future value of the account is
A = P(1 + r/n)^(nt)
where you have
A = 19909.20
P = 8975
r = 0.038
t = 21
The resulting equation is not one that can be solved by algebraic means, but we can use a graphing calculator to find n. This graph shows us n = 12, so
the interest compounds monthly.
Answer:
pairs
Step-by-step explanation:
Given
Profit on selling 'x' pairs of shoes is 
Find the derivative of the function to find out the critical points

Thus, for 4 pair of shoes profit is maximize.
Answer:
-56w^2x^9-24w^3x^6-48w^2x^6
Step-by-step explanation:
Expand by distributing terms.
-(56w^2x^9+24w^3x^6-48w^2x^6)
Then remove the parentheses
Answer:
y=kx
subst y=10 and x=20 into the above
<em>1</em><em>0</em><em>=</em><em>k20</em>
<em>k</em><em>=</em><em>1</em><em>0</em><em>/</em><em>2</em><em>0</em>
<em>k</em><em>=</em><em>1</em><em>/</em><em>2</em>
<em>therefore</em><em> </em><em>relationship</em><em>:</em><em> </em><em>y</em><em>=</em><em>1</em><em>/</em><em>2</em><em>x</em>
<em>subst</em><em> </em><em>x</em><em>=</em><em>1</em><em>5</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>relationship</em>
<em> </em><em>y</em><em>=</em><em>1</em><em>/</em><em>2</em><em>(</em><em>1</em><em>5</em><em>)</em>
<em>y</em><em>=</em><em>7</em><em>,</em><em>5</em>
Step by step explanation:
- Step 1: when they say y varies directly with x they mean<em> y is proportional to x</em>
- step 2: so y=kx where <em>k is the constant</em>
- step 3: is to substitute <em>y=10</em> and <em>x=20</em> into the above equation y=kx
- step 4: you will end up with <em>10=k20</em> then divide both sides by 20 so that <em>k becomes the subject of the formula </em>
- step 5: your answer from the above will be <em>k=10/20 </em>so the relationship is <em>y is directly proportional to 1/2 x </em>what you did here is that you substituted k for 1/2 in the equation in step 3
- step 6: is to finally substitute x=15 into the equation <em>y=1/2x</em> to finally get your answer <em>y</em><em>=</em><em>7</em><em>,</em><em>5</em><em>.</em>