<span>Solving the equation for Y = 1.
5 * (3 * 1 - 2) = 15 * 1 - 10
5 * (3 - 2) = 15 -10
5 * 1 = 5
5 = 5
Solving the equation for Y = 2.
5 * (3 * 2 - 2) = 15 * 2 - 10
5 * (6 - 2) = 30 -10
5 * 4 = 20
20 = 20
Solving the equation for Y = 4.
5 * (3 * 4 - 2) = 15 * 4 - 10
5 * (12 - 2) = 60 -10
5 * 10 = 50
50 = 50
Solving the equation for Y = 8.
5 * (3 * 8 - 2) = 15 * 8 - 10
5 * (24 - 2) = 120 -10
5 * 22 = 110
110 = 110
Solving the equation for Y = 9.
5 * (3 * 9 - 2) = 15 * 9 - 10
5 * (27 - 2) = 135 -10
5 * 25 = 125
125 = 125
This proves that the equation holds good for at least 5 values of 'y', which are 1, 2, 4, 8 and 9.
However, it can be proved that the equation holds good for any value of y.
Expression 5(3y-2) can be simplified to 15y -10 which is the same expression on the right had side of the equation provided.
So, equation 5(3y-2)=15y-10 is actually 15y-10=15y-10 and since this is true for all values of y, it has been proved that it is true for at least 5 values of y.</span>
Tan(15) = tan(45 - 30)
= [tan(45) - tan(30) ] / [ 1 + tan(30)tan(45)]
= (1 - 1/sqrt(3)) /(1 + 1/sqrt(3))
= (sqrt(3) - 1)/(sqrt(3) + 1)
= (sqrt(3) - 1)^2 /(3 - 1)
= 1/2 [3 + 1 - 2sqrt(3) ]
= (2 - sqrt(3) )
= 0.27 is your answer
Answer:
64 * b * b * b * b * b * b
Step-by-step explanation:
Apply exponent to number first, then expand the variable's exponent into repeated multiplication.