Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ
Answer:
Decreasing the temperature will shift the equilibrium leftwards towards reactants.
Explanation:
Hello!
In this case, since the reaction between chromate anions and hydrogen ions yields dichromate anions, water and heat, we can infer this is an exothermic reaction by which heat is released (remember in endothermic reactions heat is absorbed as a reactant), it means that considering the LeChatelier’s which states that increasing the temperature of an exothermic reaction shifts the equilibrium leftwards since heat is a product, otherwise (decreasing the temperature) the equilibrium will be shifted rightwards.
Therefore, decreasing the temperature is the perturbation that will shift the equilibrium leftwards towards the reactants.
Best regards!
The metallic elements located anywhere between 3-12 of the periodic table
Answer:
Needless to say, we have faced a lot of challenges in the analysis and study of such a huge volume of data with the traditional data processing tools. To overcome these challenges, some big data solutions were introduced such as Hadoop. These big data tools really helped realize the applications of big data.
Explanation: