The balanced equation for the above reaction is as follows
C₆H₁₂O₆(s) + 6O₂(g) --> 6H₂O(g) + 6CO₂<span>(g)
the limiting reactant in the equation is glucose as the whole amount of glucose is used up in the reaction.
the amount of </span>C₆H₁₂O₆ used up - 13.2 g
the number of moles reacted - 13.2 g/ 180 g/mol = 0.073 mol
stoichiometry of glucose to CO₂ - 1:6
then number of CO₂ moles are - 0.073 mol x 6 = 0.44 mol
As mentioned this reaction takes place at standard temperature and pressure conditions,
At STP 1 mol of any gas occupies 22.4 L
Therefore 0.44 mol of CO₂ occupies 22.4 L/mol x 0.44 mol = 9.8 rounded off - 10.0 L
Answer is B) 10.0 L CO₂
Answer:
1.Handpicking,winnowing and sieving 2. distillation 3.distillation 5. winnowing 6.magnet
Answer:
a) The heat which we supply to water during boiling is used to overcome these forces of attraction between the particles so that they become totally free and change into a gas. This latent heat does not increase the kinetic energy of water particles and hence no rise in temperature takes place during the boiling of water.
b) Steam produces more severe burns than boiling water even though both are at 100oC because steam contains more heat, in the form of latent heat, than boiling water.
Explanation:
i hope this will help u
There are six electrons in the covalent bonds.
Two N atoms would be :N:· + ·:N:
An N₂ molecule would be :N:::N: or :N≡N:
This gives each N atom an octet of eight electrons in its valence shell.
Answer:
im not sure but I hope this helps
Explanation:
I believe the equivalents is just the moles reactant/moles limiting reactant
water has a denisty of 1 g/mL. 1 L is 1000 ml so there are 1000g/L.
the molar mass of water is 18g/mol if you use the Liters in the equation above you can find the number of grams present. divide this number you found by 18 to find the moles.
now take the amount of the other reactant given and divide it by its own molar mass. this will give you the number of moles of that reactant.
divide the moles of water by the moles of the reactant and that is the equivalent.
to find the normality you take this number and divide it by the number of liters.