Answer:
% = 76.75%
Explanation:
To solve this problem, we just need to use the expressions of half life and it's relation with the concentration or mass of a compound. That expression is the following:
A = A₀ e^(-kt) (1)
Where:
A and A₀: concentrations or mass of the compounds, (final and initial)
k: constant decay of the compound
t: given time
Now to get the value of k, we should use the following expression:
k = ln2 / t₁/₂ (2)
You should note that this expression is valid when the reaction is of order 1 or first order. In this kind of exercises, we can assume it's a first order because we are not using the isotope for a reaction.
Now, let's calculate k:
k = ln2 / 956.3
k = 7.25x10⁻⁴ d⁻¹
With this value, we just replace it in (1) to get the final mass of the isotope. The given time is 1 year or 365 days so:
A = 250 e^(-7.25x10⁻⁴ * 365)
A = 250 e^(-0.7675)
A = 191.87 g
However, the question is the percentage left after 1 year so:
% = (191.87 / 250) * 100
<h2>
% = 76.75%</h2><h2>
And this is the % of isotope after 1 year</h2>
Answer: Raw data, perhaps.
Explanation: I'm not certain what the question is seeking for an answer, but I would suggest "raw data" would be a reasonable choice. It reflects the data was recorded, but not yet processed to provide a conclusion or observation.
If one were a bit snarky, other possiblities include
- a pile of dung
- my labmate's scrawls, or
- the best web results I could find
Explanation:
look in the picture for the answer
Answer:
1. Ar, Cl, Al, Mg, Na
2. O, S, Se, Te, Po
Explanation:
Just remember the trends. From left to right, atomic radius decreases because proton increases and pulls electrons closer. From top to bottom, atomic radius increases because there are more electron shells.
Each mole of nitrogen that microbes fix requires the breakdown of 16 moles of ATP (adenosine triphosphate). The energy needed by these microbes is obtained by oxidizing organic compounds. In other words, the nitrogenase enzyme must use a significant amount of energy to convert N2 to NH3.
The great majority of nitrogen on Earth exists as molecular N2, and before to the agricultural and industrial revolutions, the only significant mechanism producing reactive nitrogen was biological nitrogen fixation. Any natural or artificial process known as nitrogen fixation causes free nitrogen (N2), a relatively inert gas present in large quantities in the atmosphere, to chemically interact with other elements to generate more reactive nitrogen compounds like ammonia, nitrates, or nitrites. carbon cycle.
Learn more about Adenosine Triphosphate here-
brainly.com/question/859444
#SPJ4