Answer:
See explanation and image attached
Explanation:
The Gilman reagent is a lithium and copper (diorganocopper) reagent with a general formula R2CuLi. R is an alkyl or aryl group.
They are useful in the synthesis of alkanes because they react with organic halides to replace the halide group with an R group.
In this particular instance, we intend to synthesize propylcyclohexane. The structure of the lithium diorganocopper (Gilman) reagent required is shown in the image attached to this answer.
Answer: 66.2 g
Explanation:
1) The ratio of Al in the molecule is 1 mol to 1 mol .
2) The mass of 1 mol of molecules of Al (CH2H3O2)3 is the molar mass of the compound.
3) You calculate the molar mass of the compound using the atomic masses of each atom, in this way:
Al: 27 g/mol
C: 2 * 3 * 12 g/mol = 72 g/mol
H: 3 * 3 * 1 g/mol = 9 g/mol
O: 2 * 3 * 16 g/mol = 96 g/mol
Molar mass = 27 g/mol + 72 g/mol + 9 g/mol + 96 g/mol = 204 g/mol
4) Set a proportion:
27 g/mol x
-------------------- = ----------
204 g/mol 500 g
5) Solve for x:
x = 500 g * 27 g/mol / 204 g/mol = 66.2 g
Answer:
It is involved in the conversion of ADP to ATP
Explanation:
Most enzymes in biological systems function by reversible uptake and release of hydrogen in redox processes. The enzyme that catalyses the conversion of ADP to ATP also works by hydrogen ion transfer. Hence H+ is required in photosynthesis for the conversion of ADP to ATP
Explanation:
Let us assume that the given data is as follows.
V = 3.10 L, T =
= (19 + 273)K = 292 K
P = 40 torr (1 atm = 760 torr)
So, P = 
= 0.053 atm
n = ?
According to the ideal gas equation, PV = nRT.
Putting the given values into the above equation to calculate the value of n as follows.
PV = nRT

0.1643 = 
n = 
It is known that molar mass of ethanol is 46 g/mol. Hence, calculate its mass as follows.
No. of moles =
mass =
g
= 0.315 g
Thus, we can conclude that the mass of liquid ethanol is 0.315 g.
The answer is the last one .... The ability to do work and cause change