<h3>
Answer: Si (choice D)</h3>
This is the element Silicon.
=========================================================
Explanation:
First convert each percentage to its decimal form.
For example, 92.2297% converts to 0.922297 after moving the decimal point two spots to the left.
After doing that, multiply those decimal values with their respective atomic mass unit (amu) values.
- 27.9769 * 0.922297 = 25.8030109393
- 28.9765 * 0.046832 = 1.357027448
- 29.9738 * 0.030872 = 0.9253511536
Then we add up the results
25.8030109393 + 1.357027448 + 0.9253511536 = 28.0853895409
That rounds to about 28.085
Then look at the periodic table to see the atomic mass of Cobalt (Co), Aluminum (Al), Nickel (Ni) and Silicon (Si). The mass values listed in the periodic table are weighted averages of all the isotopes. The units for the mass are still in amu.
- Cobalt = 58.933
- Aluminum = 26.982
- Nickel = 58.693
- Silicon = 28.085
We have a match with silicon, showing that <u>choice D</u> is the final answer.
Flerovium at its ground state is solid. It has electron configuration of [Rn]5f¹⁴6d¹⁰7s²7p². The expected number of valence electrons in a flerovium atom is 2. A ground state is the most stable state of an atom at satndard temperature and pressure.
Answer:
volume of the gas is 5.0L
Explanation:
Using Boyle's law that state the pressure of a gas is inversely proportional to volume of it occupies when temperature is constant, it is possible to write:
P₁V₁ = P₂V₂
<em>Where P is pressure, V is volume and 1 and 2 are initial and final states.</em>
<em />
If initial volume is 2.5L, initial pressure is 2.0atm and 1.0atm is final pressure, final volume is:
2.0atm*2.5L = 1atm V₂
5.0L = V₂
Thus, <em>volume of the gas is 5.0L</em>.
Hope this helps :) remember your conversions and just practice it's fairly easy:)
Answer:
1.7 ppm
Explanation:
Original amount N' = 2.6 ppm
time to testing t = 24 hr
final amount N = 2.1 ppm
Using exponential inhibited decay, we have
N = N'e^(-kt)
Where
N is the new reading
N' is the original reading
t is the decay time
k is the decay constant
Substituting, we have
2.1 = 2.6 x e^(-k x 24)
2.1 = 2.6 x e^(-24k)
0.808 = e^(-24k)
We take the natural log of both sides of the equation
Ln 0.808 = Ln (e^(-24k))
-0.213 = - 24k
K = 0.213/24 = 0.00886
After 48 hrs, the reading of free chlorine will be
N = 2.6 x e^(-0.00886 x 48)
N = 2.6 x e^(-0.425)
N = 2.6 x 0.654
N = 1.7 ppm