Hi there!
The word "of" is the same thing as a multiplication sign.
1)
20% = 0.2
0.2 × 20 = 4
2)
? × 30 = 15
divide each side of the equation by 30
? = 0.5
0.5 = 50%
3)
50% = 0.5
0.5 × ? = 50
divide each side of the equation by 0.5
? = 100
There you go! I really hope this helped, if there's anything just let me know! :)
Answer:
A
Simpel use have to use input outpout machine
Answer:
A. 
Step-by-step explanation:
We need to determine whether the polynomial
can be factored into perfect squares. If so, factor the polynomial. Otherwise, select that it cannot be factored into a perfect square.









Hence choice A.
is correct.
A.) Since there are no restrictions as to the dimensions of the candle except that their volumes must equal 1 cubic foot and that each must be a cylinder, we have the freedom to decide the candles' dimensions.
I decided to have the candles equal in volume. So, 1 cubic foot divided by 8 gives us 0.125 cubic foot, 216 in cubic inches.
With each candle having a volume of 216 cubic inches, I assign a radius to each: 0.5 in, 1.0 in, 1.5 in, 2.0 in, 2.5 in, 3.0 in, 3.5 in, and 4.0 in. Then, using the formula of the volume of a cylinder, which is:
V=pi(r^2)(h)
we then solve the corresponding height per candle. Let us let the value of pi be 3.14.
Hence, we will have the following heights (expressed to the nearest hundredths) for each of the radius: for
r=2.5 in: h=11.01 in
r=3.0 in: h= 7.64 in
r=3.5 in: h= 5.62 in
r=4.0 in: h= 4.30 in
r=4.5 in: h= 3.40 in
r=5.0 in: h= 2.75 in
r=5.5 in: h= 2.27 in
r=6.0 in: h= 1.91 in
b. each candle should sell for $15.00 each
($20+$100)/8=$15.00
c. yes, because the candles are priced according to the volume of wax used to make them, which in this case, is just the same for all sizes
Answer:
Option A is correct.
Step-by-step explanation:
As we see the graph, we can say that the correct statement is :
A.)All repairs requiring 1 hour or less have the same labor cost. We can see that the coat from 0 hours to 1 hour is $50. So, the number of hours falling in this range has the same repairing cost.
B.) Labor costs the same no matter how many hours are used for a repair. This is wrong as the graph is increasing after 1 hour.
C.) Labor costs for a repair are more expensive as the number of hours increases. This is wrong as the hours are increasing from 0.25 to 0.5 then to 0.75 but they all have the same cost.
D.)There is no cost of labor for a repair requiring less than 1 hour. This is also wrong. The cost is $50.