Answer:
hello your question has some missing values attached below is the complete question with the missing values
answer :
a) 0.083 secs
b) 0.33 secs
c) 3e^-4/3
Explanation:
Given that
g = 32 ft/s^2 , spring constant ( k ) = 2 Ib/ft
initial displacement = 1 ft above equilibrium
mass = weight / g = 4/32 = 1/8
damping force = instanteous velocity hence β = 1
a<u>)Calculate the time at which the mass passes through the equilibrium position.</u>
time mass passes through equilibrium = 1/12 seconds = 0.083
<u>b) Calculate the time at which the mass attains its extreme displacement </u>
time when mass attains extreme displacement = 1/3 seconds = 0.33 secs
<u>c) What is the position of the mass at this instant</u>
position = 3e^-4/3
attached below is the detailed solution to the given problem
Answer:
a)
m/s
b)
Angular frequency = 
Explanation:
As we know

q is the charge on the electron =
C
B is the magnetic field in Tesla =
T
r is the radius of the circle =
m
mass of the electrons =
Kg
a)
Substituting the given values in above equation, we get -
m/s
b)
Angular frequency =

Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
● Use lubricants such as oil.
● Place the load on a piece of cloth as it can ease the friction
● Place the load on a cart with wheels so it can be converted to rolling friction and can be pushed easily.
● Place the load on an inclined plane
Answer:

Explanation:
<u>Horizontal Launch
</u>
It happens when an object is launched with an angle of zero respect to the horizontal reference. It's characteristics are:
- The horizontal speed is constant and equal to the initial speed

- The vertical speed is zero at launch time, but increases as the object starts to fall
- The height of the object gradually decreases until it hits the ground
- The horizontal distance where the object lands is called the range
We have the following formulas




Where
is the initial horizontal speed,
is the vertical speed, t is the time, g is the acceleration of gravity, x is the horizontal distance, and y is the height.
If we know the initial height of the object, we can compute the time it takes to hit the ground by using

Rearranging and solving for t



We then replace this value in

To get



The initial speed depends on the initial height y=32.5 m, the range x=107.6 m and g=9.8 m/s^2. Computing 

The launch velocity is
