Lower mass: 1.20 kg, upper mass: 1.28 kg
Explanation:
In order to solve the problem, we consider the forces acting on the upper mass only first.
The upper mass is acted upon three forces:
- The applied force
, upward - The weight of the mass itself,
, where
is the upper mass and
is the acceleration of gravity, downward - The tension in the string,
, downward
Therefore, the equation of the forces for the upper mass is:

where
is the acceleration (upward)
Solving for
,

Now we can find the lower mass by considering the forces acting on it:
- The tension in the string, T = 16 N, upward
- The weight of the mass itself,
, where
is the lower mass, downward
So the equation of the forces is

And solving for the mass,

Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
Answer:
0.2
Explanation:
Horizontal force=100N
Weight of crate=500 N
We have to find the coefficient of kinetic friction.
Normal ,N=Weight=500N
Horizontal force,
Where
=Horizontal force
N=Normal force
=Coefficient of kinetic friction
Substitute the values in the formula


Hence, the coefficient of kinetic friction =0.2
Answer:
The law of inertia relates to revolution of planets round the sun due to constant motion of the planets round the sun.
Explanation:
Law of inertia states that a body at rest or uniform motion will continue to be at rest or uniform motion unless it is acted upon by an external force.
The gravitational force keeps the planets revolving round the sun in a uniform motion, this will continue till infinity unless equal and opposite force acts on our planets.
Therefore, the law of inertia relates to revolution of planets round the sun due to constant motion of the planets round the sun.