Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:
The temperature of the Earth depends on many factors, including the concentration of greenhouse gases such as water vapour, methane and carbon dioxide. The Earth's temperature also depends on the rates at which light radiation and infrared radiation are: absorbed by the Earth's surface and atmosphere.
Linear momentum is in a straight line and depends on the objects mass and velocity.
Angular (rotational) momentum depends on the objects mass, velocity, and radius.
Starches are more than chains of sugar granules strung together. In the case of corn starch, it is actually millions of these molecules packed into very discrete granules, which cannot be seen by the naked eye. Putting corn starch into cold water, nothing happens because cold water does not dissolve these granules. Putting it into hot water (like cooking gravy) however, these granules dissolve and create bonds between the water and the starch.
Answer:
the intensity will be 4 times that of the earth.
Explanation:
let us assume the following:
intensity of light on earth =J
distance of earth from sun = d
intensity of light on other planet = K
distance of other planet from sun =
(from the question, the planet is half as far from the sun as earth)
from the question the intensity is inversely proportional to the square of the distance, hence
- intensity on earth : J =

J
= 1 ... equation 1
- intensity on other planet : K =
(the planet is half as far from the sun as earth)
K
= 1 ....equation 2
- equating both equation 1 and 2 we have
J
= K
J
= K
J = 
K = 4J
intensity of light on other planet (K) = 4 times intensity of light on earth (J)