From the equation, we see that the molar ratio of Fe : S required is:
8 : 1
The moles of Fe present are: 9.42/56 = 0.168
Moles of S = 68/(32 * 8) = 0.265
The molar ratio is:
1 : 1.6
Therefore, iron is the limiting reactant as it is present in a ratio lower than that required. The ratio of
Fe : FeS is
1 : 1
So 0.168 moles of FeS will form. The mass of FeS will be:
Mass = 0.168 * (56 + 32)
Mass = 14.78 grams
14.78 grams of FeS will be formed.
<span>C4H10 + 6.5 O2 ----> 4CO2 + 5H2O
2C4H10 + 13 O2 ----> 8CO2 + 10H2O
1. Count the C on the left (4), put a 4 where the C on the right.
2. Count the H on the left (1), you have two on the right, so you multimply this two by 5. Put the 5 in front of the H2O
3. Count the O on the right. You have 4*2 + 5 = 13. You have two on the left, so you need 6.5 on the left.
4. Now multiply everything on the equation by two so you have nice integer numbers.
5. check you have the same amount of everything on each side.
Example C: left 8, right 8, etc.
I hope this helps. :)</span><span>
</span>
Answer:
Question 2: Na3PO4, KOH; Question 3: Na3PO4, KOH
Explanation:
Question 2
The reactants in a chemical equation are the species on the left side of the reaction arrow.
Thus the reactants are Na3PO4, KOH (sodium phosphate and potassium hydroxide).
Question 3.
The products in a chemical equation are the species on the right side of the reaction arrow.
Thus the products are NaOH, K3PO4 (sodium hydroxide and potassium phosphate).
Answer:
Number of moles = 10.6 mol
Explanation:
Given data:
Molar mass of H = 1.008 g/mol
Molar mass of C = 12.01 g/mol
Molar mass of O = 16.00 g/mol
Mass of citric acid = 2.03 kg (2.03×1000 = 2030 g)
Number of moles of citric acid = ?
Solution:
Formula:
Number of moles = mass/molar mass
Now we will calculate the molar mass of citric acid:
C₆H₈O₇ = (12.01× 6) + (1.008×8) + (16.00×7)
C₆H₈O₇ = 72.06 + 8.064+112
C₆H₈O₇ = 192.124g/mol
Number of moles = 2030 g/ 192.124g/mol
Number of moles = 10.6 mol