Answer:
The probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

As the sample size is large, i.e. <em>n</em> = 492 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.
The mean and standard deviation of the sampling distribution of sample proportion are:

Compute the probability that the sample proportion will differ from the population proportion by greater than 0.03 as follows:

![=P(|Z|>2.61)\\\\=1-P(|Z|\leq 2.61)\\\\=1-P(-2.61\leq Z\leq 2.61)\\\\=1-[P(Z\leq 2.61)-P(Z\leq -2.61)]\\\\=1-0.9955+0.0045\\\\=0.0090](https://tex.z-dn.net/?f=%3DP%28%7CZ%7C%3E2.61%29%5C%5C%5C%5C%3D1-P%28%7CZ%7C%5Cleq%202.61%29%5C%5C%5C%5C%3D1-P%28-2.61%5Cleq%20Z%5Cleq%202.61%29%5C%5C%5C%5C%3D1-%5BP%28Z%5Cleq%202.61%29-P%28Z%5Cleq%20-2.61%29%5D%5C%5C%5C%5C%3D1-0.9955%2B0.0045%5C%5C%5C%5C%3D0.0090)
Thus, the probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
The line equation in slope-intercept form is given by

where b is the y-intercept and m is the slope.
Then, we need to convert the given equation into the slope-intercept form. Then, by subtracting 10x to both sides, we have

and by dividing both sides by 2, we get

By comparing this result with the first equation, we can see that the slope is m= -5. So, the answer is: -5
Answer:
13 and 8
Step-by-step explanation:
height is not used to find the bottom triangle
Answer: 2004.3
Step-by-step explanation: 51% of 3930 is 2004.3