Answer:
Here just look at the pic here
Explanation:
Answer:

Explanation:
Hello,
In this case, for the given reaction, the equilibrium constant turns out:
![Keq=\frac{[B]}{[A]}=\frac{0.5M}{1.5M} =1/3](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3D%5Cfrac%7B0.5M%7D%7B1.5M%7D%20%3D1%2F3)
Nonetheless, we are asked for the reverse equilibrium constant that is:

Which is greater than one.
In such a way, the Gibbs free energy turns out:

Now, since the reverse equilibrium constant is greater than zero its natural logarithm is positive, therefore with the initial minus, the Gibbs free energy is less than zero, that is, negative.
I think it maybe 59.7852%
Explanation:
Very little to no formation of silver sulfate, as the silver sulfate Ksp( solubility product) is very large compared to the yellow precipitate Ksp.
By adding sodium sulfate to the silver / yellow precipitate mix, this question asks us to find a potential result and justification for the outcome. This implies that we will have to select the right answer that has a valid result and an adequate explanation for it. A substance's Ksp, or solubility product, is defined as the product of the dissolved ion concentration of each substance elevated to the power of its stoichiometric coefficient.
Answer:
it's easier to lose one electron because it's less work for the atom to do and easier to lose one than gain a whole 7, because the atom wants to gain a full outer shell as soon as possible