Answer:
We are heating the sample repeatedly to become a pure compound of only MgSO4 (withot H2O) and a constant mass.
Explanation:
Step 1: Data given
Mass of MgSO4·7H2O = 5.06 grams
The remaining MgSO4 had a constant mass of 2.47 grams.
Step 2: Explain why the sample in the crucible was heated repeatedly until the sample had a constant mass.
Before heating the compound has magnesium sulfate and water.
The total mass of this compound is 5.06 grams
By heating we try to eliminate the water.
After heating there remain mgSO4 with a mass of 2.47 grams
This means 5.06 - 2.47 = 2.59 grams is water. All of this is eliminated.
The heating process happens repeatedly to make sure the final compound is pure. So the 2.47 grams os only MgSO4. If the mass would not be constant. It means the compound is not pure, the not all the water is eliminated yet.
So we are heating the sample repeatedly to become a pure compound of only MgSO4 (withot H2O) and a constant mass.
<u>Answer:</u> The gas produced when sodium phosphide reacts with water is phosphine.
<u>Explanation:</u>
When sodium phosphide reacts with water molecule, it leads to the production of flammable, poisonous gas known as phosphine along with the production of sodium hydroxide.
The chemical reaction for the reaction of sodium phosphide with water follows the equation:

By Stoichiometry of the reaction:
1 mole of sodium phosphide reacts with 3 moles of water to produce 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Hence, the gas produced when sodium phosphide reacts with water is phosphine.
Answer:
The correct option is the option;

Explanation:
The wavelength of a wave is the distance between two successive crests of the wave
Therefore, the wavelength, λ, is given by the fraction of the velocity, <em>v</em>, of the wave divided by the frequency, <em>f</em>, (the number of cycles that pass through a point) of the wave
Mathematically, we have;

