Answer:
Step-by-step explanation:
The reciprocal of 5:
The negative reciprocal of 5:
Answer:
a) P(X∩Y) = 0.2
b) = 0.16
c) P = 0.47
Step-by-step explanation:
Let's call X the event that the motorist must stop at the first signal and Y the event that the motorist must stop at the second signal.
So, P(X) = 0.36, P(Y) = 0.51 and P(X∪Y) = 0.67
Then, the probability P(X∩Y) that the motorist must stop at both signal can be calculated as:
P(X∩Y) = P(X) + P(Y) - P(X∪Y)
P(X∩Y) = 0.36 + 0.51 - 0.67
P(X∩Y) = 0.2
On the other hand, the probability that he must stop at the first signal but not at the second one can be calculated as:
= P(X) - P(X∩Y)
= 0.36 - 0.2 = 0.16
At the same way, the probability that he must stop at the second signal but not at the first one can be calculated as:
= P(Y) - P(X∩Y)
= 0.51 - 0.2 = 0.31
So, the probability that he must stop at exactly one signal is:
The correct option is (B) yes because all the elements of set R are in set A.
<h3>
What is an element?</h3>
- In mathematics, an element (or member) of a set is any of the distinct things that belong to that set.
Given sets:
- U = {x | x is a real number}
- A = {x | x is an odd integer}
- R = {x | x = 3, 7, 11, 27}
So,
- A = 1, 3, 5, 7, 9, 11... are the elements of set A.
- R ⊂ A can be understood as R being a subset of A, i.e. all of R's elements can be found in A.
- Because all of the elements of R are odd integers and can be found in A, R ⊂ A is TRUE.
Therefore, the correct option is (B) yes because all the elements of set R are in set A.
Know more about sets here:
brainly.com/question/2166579
#SPJ4
The complete question is given below:
Consider the sets below. U = {x | x is a real number} A = {x | x is an odd integer} R = {x | x = 3, 7, 11, 27} Is R ⊂ A?
(A) yes, because all the elements of set A are in set R
(B) yes, because all the elements of set R are in set A
(C) no because each element in set A is not represented in set R
(D) no, because each element in set R is not represented in set A
The awnser is a I hope I helped you out