Answer:
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the mean of the Population = 95
Given that the standard deviation of the Population = 5
Let 'X' be the random variable in a normal distribution
Let X⁻ = 96.3
Given that the size 'n' = 84 monitors
<u><em>Step(ii):-</em></u>
<u><em>The Empirical rule</em></u>


Z = 2.383
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = P(Z≥2.383)
= 1- P( Z<2.383)
= 1-( 0.5 -+A(2.38))
= 0.5 - A(2.38)
= 0.5 -0.4913
= 0.0087
<u><em>Final answer:-</em></u>
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
9514 1404 393
Answer:
r = 1/9
Step-by-step explanation:
First of all, solve the equation for r:
y = rx
y/x = r . . . . . . . divide by x
__
Since r is a constant, it will be the same for any corresponding pairs of x and y. It is convenient to choose both x and y as integers, as in the third table entry.
r = y/x = 5/45
r = 1/9 . . . . . . . . . reduced fraction
_____
<em>Additional comment</em>
It is not a bad idea to check to see that this works with other values of x and y. For the first line of the table, we have x = 11:
y = rx = (1/9)(11) = 11/9 = 1 2/9 . . . . matches the table value
A=148°
B=148°
Step-by-step explanation:
180-38=148°
because A and B are equal, they're both 148°
Answer:
1/4
Step-by-step explanation:
1/6 + 1/12
Multiply the numerator and denominator of the first fraction by 2.
2/12 + 1/12
Add both fractions, because they have a common denominator.
3/12
The fraction can be further simplified.
1/4