Answer:
.....
Step-by-step explanation:
i think 1.6.
is it correct?
< BAC = 50
< BCA = 90
interior angles of a triangle add up to 180
so < ABC = 180 - (90 + 50) = 180 - 140 = 40
and < ABC = < CDE.......so < CDE = 40 <===
Equivalent expressions are expressions that have the same value, and can be used interchangeably.
The result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The expression is given as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29)
Rewrite the expression as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%28%5Csqrt%5B3%5D%7B2%5E4x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B3%5E3%20%5Ctimes%202x%5E6y%5E5%7D%29)
Evaluate the roots
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%282x%5Csqrt%5B3%5D%7B2y%7D%29%20%20%2B%204%20%283x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Open the brackets
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%204x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%2012x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The above expression cannot be further simplified.
Hence, the result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Read more about equivalent expressions at:
brainly.com/question/2972832
Answer:
y = 1.5x + 5
Step-by-step explanation:
The slope(m) is 1.5
The line passes through (0,5)
Taking another point (x,y) on the line;
Slope(m) = change in y ÷ change in x
1.5 
Cross multiplying gives;
y = 1.5x + 5