Answer:
Step-by-step explanation:
72%
Answer:
The sequence of transformations that maps ΔABC to ΔA'B'C' is the reflection across the <u>line y = x</u> and a translation <u>10 units right and 4 units up</u>, equivalent to T₍₁₀, ₄₎
Step-by-step explanation:
For a reflection across the line y = -x, we have, (x, y) → (y, x)
Therefore, the point of the preimage A(-6, 2) before the reflection, becomes the point A''(2, -6) after the reflection across the line y = -x
The translation from the point A''(2, -6) to the point A'(12, -2) is T(10, 4)
Given that rotation and translation transformations are rigid transformations, the transformations that maps point A to A' will also map points B and C to points B' and C'
Therefore, a sequence of transformation maps ΔABC to ΔA'B'C'. The sequence of transformations that maps ΔABC to ΔA'B'C' is the reflection across the line y = x and a translation 10 units right and 4 units up, which is T₍₁₀, ₄₎
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,
Answer:
<h2>y=7x-47</h2>
Step-by-step explanation:


Step-by-step explanation:
the first question
x²+x+5
when x is -4
(-4)²+(-4)+5
16-4+5
12+5
17
hope this was helpful