Solving a polynomial inequation
Solving the following inequation:
(x - 8) (x + 1) > 0
We are going to find the sign both parts of the multiplication,
(x - 8) and (x + 1), have when
x < - 8
-8 < x < 1
1 < x
Then we know (x - 8) (x + 1) > 0 whenever (x - 8) (x + 1) is positive
We can see in the figure (x - 8) (x + 1) is positive when x < -8 and x > 1
Then
Answer:B
To find x, divide 13.1 by 150 to get <span>0.08733333333.</span>
Answer: The answer will be 28
Step-by-step explanation:
First, let us restate the given conditions
c is 5 more than variable a ( c = a + 5)
c is also three less than variable a (c = a - 3)
Now, lets look at the answer choices and or given
c = a − 5
c = a + 3
Here, c is 5 less than "a"...so automatically disqualified
a = c + 5
a = 3c − 3
Here, we have to get "C" by itself in both top and bottom equation.
So,
Simplified version :
c = a - 5
Here, c is 5 less than "a"...so automatically disqualified
a = c − 5
a = 3c + 3
Here also, we have to get "C" by itself in both top and bottom equation.
So,
simplified version:
c = a + 5
Here, c is 5 more than "a"...so we continue
c = (a - 3) / 3
Here, c is 3 less than "a" <u>divided by 3</u><u /> . So, this is not correct
c = a + 5
c = a − 3
Here, c is 5 more than "A"
Also, c is 3 less than "a"
Which satisfies the given.
So, our answer is going to be the last one:
c = a + 5
c = a - 3
Not 100% sure but it might be B