Answer:
Al final, Eduardo tenía 20 dulces.
Step-by-step explanation:
Dado que al principio Eduardo y Adrián tenían el mismo número de dulces, y Eduardo le dio a Adrián la mitad de los dulces que tenía, y después, Adrián le dio a Eduardo la mitad de los dulces que tenía él en ese momento, así que a Adrián le quedaron 12 dulces, para determinar cuántos dulces tenía Eduardo al final se debe realizar el siguiente cálculo:
Eduardo 1X = Adrián 1X
Eduardo 0.5X = Adrián 1.5X
Eduardo 1.25X = Adrián 0.75X
0.75 X = 12
X = 12 / 0.75
X = 16
1.25 X = 16 x 1.25 = 20
Así, al final, Eduardo tenía 20 dulces.
Sin2(x) +cos(x)=1
from the relation: (sin2(x) +cos2(x) =1 )
so , sin2(x)=1-cos2(x)
by subs. in the main eqn.
1-cos2(x) + cos(x) =1
by simplify the eqn.
cos(x) -cos2(x)=0
take cos(x) as a common factor
cos(x)* (1-cos(x))=0
then cos(x)=0 && cos(x)=1
cos(x)=0 if x= pi/2
& cos(x) = 1 if x = 0 , 2*pi
so the solution is x= {0,pi/2 , 2*pi}
Answer:
B
Step-by-step explanation:
since x is GREATER than -25, the shaded part has to be on the right of -25
Answer:
Step-by-step explanation:
There are three reasons here why randomization is not being applied.
First, the coach is only observing football players attending the meeting. This is not representative of the entire team.
Second, there is no selection process. The coach isn't using a random generator or using a similar method.
Third, the players are volunteering for the test. The results will be biased because of this.
The only way to determine whether or not an outcome is unusual or not is to compare it with previous or future outcomes.